Articles de revues sur le sujet « Diode à avalanche à photon unique »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Diode à avalanche à photon unique.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Diode à avalanche à photon unique ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Finkelstein, H., M. J. Hsu et S. C. Esener. « Dual-junction single-photon avalanche diode ». Electronics Letters 43, no 22 (2007) : 1228. http://dx.doi.org/10.1049/el:20072355.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kodet, Jan, Ivan Prochazka, Josef Blazej, Xiaoli Sun et John Cavanaugh. « Single photon avalanche diode radiation tests ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 695 (décembre 2012) : 309–12. http://dx.doi.org/10.1016/j.nima.2011.11.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Lee, Changhyuk, Ben Johnson et Alyosha Molnar. « Angle sensitive single photon avalanche diode ». Applied Physics Letters 106, no 23 (8 juin 2015) : 231105. http://dx.doi.org/10.1063/1.4922526.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Zappa, F., A. Gulinatti, P. Maccagnani, S. Tisa et S. Cova. « SPADA : single-photon avalanche diode arrays ». IEEE Photonics Technology Letters 17, no 3 (mars 2005) : 657–59. http://dx.doi.org/10.1109/lpt.2004.840920.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Chen, Zhen, Bo Liu, Guangmeng Guo, Kangjian Hua et Weiqiang Han. « Photon Counting Heterodyne With a Single Photon Avalanche Diode ». IEEE Photonics Technology Letters 33, no 17 (1 septembre 2021) : 931–34. http://dx.doi.org/10.1109/lpt.2021.3098553.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Tisa, S., F. Zappa, A. Tosi et S. Cova. « Electronics for single photon avalanche diode arrays ». Sensors and Actuators A : Physical 140, no 1 (octobre 2007) : 113–22. http://dx.doi.org/10.1016/j.sna.2007.06.022.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Li, Yichen, Majid Safari, Robert Henderson et Harald Haas. « Optical OFDM With Single-Photon Avalanche Diode ». IEEE Photonics Technology Letters 27, no 9 (1 mai 2015) : 943–46. http://dx.doi.org/10.1109/lpt.2015.2402151.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Li, Li‐Qiang, et Lloyd M. Davis. « Single photon avalanche diode for single molecule detection ». Review of Scientific Instruments 64, no 6 (juin 1993) : 1524–29. http://dx.doi.org/10.1063/1.1144463.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Dalla Mora, Alberto, Alberto Tosi, Simone Tisa et Franco Zappa. « Single-Photon Avalanche Diode Model for Circuit Simulations ». IEEE Photonics Technology Letters 19, no 23 (décembre 2007) : 1922–24. http://dx.doi.org/10.1109/lpt.2007.908768.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Lacaita, A., M. Ghioni et S. Cova. « Double epitaxy improves single-photon avalanche diode performance ». Electronics Letters 25, no 13 (1989) : 841. http://dx.doi.org/10.1049/el:19890567.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Hu, Jun, Xiao Bin Xin, Petre Alexandrov, Jian Hui Zhao, Brenda L. VanMil, D. Kurt Gaskill, Kok Keong Lew, Rachael L. Myers-Ward et Charles R. Eddy. « 4H-SiC Single Photon Avalanche Diode for 280nm UV Applications ». Materials Science Forum 600-603 (septembre 2008) : 1203–6. http://dx.doi.org/10.4028/www.scientific.net/msf.600-603.1203.

Texte intégral
Résumé :
This paper reports a 4H-SiC single photo avalanche diode (SPAD) operating at the solar blind wavelength of 280 nm. The SPAD has an avalanche breakdown voltage of 114V. At 90% and 95% of the breakdown voltage, the SPAD shows a low dark current of 57.2fA and 159fA, respectively. The quantum efficiency of 29.8% at 280nm and <0.007% at 400nm indicates a high UV-to-visible rejection ratio of >4300. Single photon counting measurement at 280nm shows that a single photon detection efficiency of 2.83% with a low dark count rate of 22kHz is achieved at the avalanche breakdown voltage of 116.8V.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Rech, Ivan, Stefano Marangoni, Daniele Resnati, Massimo Ghioni et Sergio Cova. « Multipixel single-photon avalanche diode array for parallel photon counting applications ». Journal of Modern Optics 56, no 2-3 (20 janvier 2009) : 326–33. http://dx.doi.org/10.1080/09500340802318309.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Khudyakov, Dmitry S. « Capabilities of image sensors with a photonic avalanche diode ». Analysis and data processing systems, no 2 (28 juin 2022) : 69–80. http://dx.doi.org/10.17212/2782-2001-2022-2-69-80.

Texte intégral
Résumé :
In many fields of science and technology there is a need to record fast running processes and phenomena, often occurring in low light conditions. In such cases, there is a need to use highly sensitive image sensors. Such sensors can be constructed on the basis of photon avalanche diodes capable of capturing even single photons. However, creating this type of sensor with high performance, in particular, with high resolution, presents a number of technological challenges, as they are more complex than traditional CMOS (Complementary Metal–Oxide–Semiconductor) and CCD (Charge-Coupled Device) sensors. Using recent advances and new circuitry, Canon created the first megapixel image sensor with a photon avalanche diode (Single Photon Avalanche Diode, SPAD). In this article, in addition to general issues related to image sensors with photon avalanche diode, the design, operation, characteristics, features and possible applications of Canon’s SPAD megapixel sensor are discussed. In particular, the methods of photon counting and time-of-flight are discussed, as well as the dynamic range of the sensor, the possibilities of sensor application for imaging in the infrared range, and the prospects for wide application of SPAD sensors in the near future. As a result, it can be noted that in addition to direct use for obtaining high-quality 2D-images of fast processes running in low light conditions, such a sensor can be used for taking images in the infrared range, to obtain 3D-images for xReality, measuring the distance to objects, obtaining a depth map, as well as in areas of science and technology that are new for such devices, including, for example, quantum computing.
Styles APA, Harvard, Vancouver, ISO, etc.
14

He, Tingting, Xiaohong Yang, Yongsheng Tang, Rui Wang et Yijun Liu. « High photon detection efficiency InGaAs/InP single photon avalanche diode at 250 K ». Journal of Semiconductors 43, no 10 (1 octobre 2022) : 102301. http://dx.doi.org/10.1088/1674-4926/43/10/102301.

Texte intégral
Résumé :
Abstract Planar semiconductor InGaAs/InP single photon avalanche diodes with high responsivity and low dark count rate are preferred single photon detectors in near-infrared communication. However, even with well-designed structures and well-controlled operational conditions, the performance of InGaAs/InP SPADs is limited by the inherent characteristics of avalanche process and the growth quality of InGaAs/InP materials. It is difficult to ensure high detection efficiency while the dark count rate is controlled within a certain range at present. In this paper, we fabricated a device with a thick InGaAs absorption region and an anti-reflection layer. The quantum efficiency of this device reaches 83.2%. We characterized the single-photon performance of the device by a quenching circuit consisting of parallel-balanced InGaAs/InP single photon detectors and single-period sinusoidal pulse gating. The spike pulse caused by the capacitance effect of the device is eliminated by using the characteristics of parallel balanced common mode signal elimination, and the detection of small avalanche pulse amplitude signal is realized. The maximum detection efficiency is 55.4% with a dark count rate of 43.8 kHz and a noise equivalent power of 6.96 × 10−17 W/Hz1/2 at 247 K. Compared with other reported detectors, this SPAD exhibits higher SPDE and lower noise-equivalent power at a higher cooling temperature.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Bulling, Anthony Frederick, et Ian Underwood. « Pion Detection Using Single Photon Avalanche Diodes ». Sensors 23, no 21 (27 octobre 2023) : 8759. http://dx.doi.org/10.3390/s23218759.

Texte intégral
Résumé :
We present the first reported use of a CMOS-compatible single photon avalanche diode (SPAD) array for the detection of high-energy charged particles, specifically pions, using the Super Proton Synchrotron at CERN, the European Organization for Nuclear Research. The results confirm the detection of incident high-energy pions at 120 GeV, minimally ionizing, which complements the variety of ionizing radiation that can be detected with CMOS SPADs.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Meng, Xiao, Shiyu Xie, Xinxin Zhou, Niccolò Calandri, Mirko Sanzaro, Alberto Tosi, Chee Hing Tan et Jo Shien Ng. « InGaAs/InAlAs single photon avalanche diode for 1550 nm photons ». Royal Society Open Science 3, no 3 (mars 2016) : 150584. http://dx.doi.org/10.1098/rsos.150584.

Texte intégral
Résumé :
A single photon avalanche diode (SPAD) with an InGaAs absorption region, and an InAlAs avalanche region was designed and demonstrated to detect 1550 nm wavelength photons. The characterization included leakage current, dark count rate and single photon detection efficiency as functions of temperature from 210 to 294 K. The SPAD exhibited good temperature stability, with breakdown voltage dependence of approximately 45 mV K −1 . Operating at 210 K and in a gated mode, the SPAD achieved a photon detection probability of 26% at 1550 nm with a dark count rate of 1 × 10 8 Hz. The time response of the SPAD showed decreasing timing jitter (full width at half maximum) with increasing overbias voltage, with 70 ps being the smallest timing jitter measured.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Liu, Chen, Hai-Feng Ye et Yan-Li Shi. « Advances in near-infrared avalanche diode single-photon detectors ». Chip 1, no 1 (mars 2022) : 100005. http://dx.doi.org/10.1016/j.chip.2022.100005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Afshar, Saeed, Tara Julia Hamilton, Langdon Davis, Andre Van Schaik et Dennis Delic. « Event-Based Processing of Single Photon Avalanche Diode Sensors ». IEEE Sensors Journal 20, no 14 (15 juillet 2020) : 7677–91. http://dx.doi.org/10.1109/jsen.2020.2979761.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Buller, G. S., J. P. R. David, S. Cova, J. S. Ng, L. J. J. Tan, A. B. Krysa, S. Pellegrini et R. E. Warburton. « Single-photon avalanche diode detectors for quantum key distribution ». IET Optoelectronics 1, no 6 (1 décembre 2007) : 249–54. http://dx.doi.org/10.1049/iet-opt:20070046.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Lubin, Gur, Ron Tenne, Ivan Michel Antolovic, Edoardo Charbon, Claudio Bruschini et Dan Oron. « Quantum correlation measurement with single photon avalanche diode arrays ». Optics Express 27, no 23 (28 octobre 2019) : 32863. http://dx.doi.org/10.1364/oe.27.032863.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Itzler, Mark A., Xudong Jiang, Mark Entwistle, Krystyna Slomkowski, Alberto Tosi, Fabio Acerbi, Franco Zappa et Sergio Cova. « Advances in InGaAsP-based avalanche diode single photon detectors ». Journal of Modern Optics 58, no 3-4 (10 février 2011) : 174–200. http://dx.doi.org/10.1080/09500340.2010.547262.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Finkelstein, Hod, Mark J. Hsu, Sanja Zlatanovic et Sadik Esener. « Performance trade-offs in single-photon avalanche diode miniaturization ». Review of Scientific Instruments 78, no 10 (octobre 2007) : 103103. http://dx.doi.org/10.1063/1.2796146.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Zappa, F., S. Tisa, A. Tosi et S. Cova. « Principles and features of single-photon avalanche diode arrays ». Sensors and Actuators A : Physical 140, no 1 (octobre 2007) : 103–12. http://dx.doi.org/10.1016/j.sna.2007.06.021.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Acerbi, F., M. Anti, A. Tosi et F. Zappa. « Design Criteria for InGaAs/InP Single-Photon Avalanche Diode ». IEEE Photonics Journal 5, no 2 (avril 2013) : 6800209. http://dx.doi.org/10.1109/jphot.2013.2258664.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Habib, Mohammad Habib Ullah, et Nicole Mcfarlane. « A Tunable Dynamic Range Digital Single Photon Avalanche Diode ». IEEE Electron Device Letters 38, no 1 (janvier 2017) : 60–63. http://dx.doi.org/10.1109/led.2016.2628023.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

WANG Wei, 王巍, 鲍孝圆 BAO Xiao-yuan, 陈丽 CHEN Li, 徐媛媛 XU Yuan-yuan, 陈婷 CHEN Ting et 王冠宇 WANG Guan-yu. « A CMOS Single Photon Avalanche Diode Device with High Photon Detection Efficiency ». ACTA PHOTONICA SINICA 45, no 8 (2016) : 823001. http://dx.doi.org/10.3788/gzxb20164508.0823001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

WANG Wei, 王巍, 陈婷 CHEN Ting, 李俊峰 LI Jun-feng, 何雍春 HE Yong-chun, 王冠宇 WANG Guan-yu, 唐政维 TANG Zheng-wei, 袁军 YUAN Jun et 王广 WANG Guang. « The Research of High Photon Detection Efficiency CMOS Single Photon Avalanche Diode ». ACTA PHOTONICA SINICA 46, no 8 (2017) : 823001. http://dx.doi.org/10.3788/gzxb20174608.0823001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Wang, Wei, Ting Chen, Yongchun He, Mengjia Huang, Hao Yang, Guanyu Wang, Zhenglin Yang et Jun Yuan. « The design and characterization of high photon detection efficiency CMOS single-photon avalanche diode ». Modern Physics Letters B 32, no 25 (5 septembre 2018) : 1850302. http://dx.doi.org/10.1142/s0217984918503025.

Texte intégral
Résumé :
The high photon detection efficiency (PDE) single-photon avalanche diode (SPAD) designed with a low voltage standard 0.18 [Formula: see text]m CMOS process is investigated in detail. The proposed CMOS SPAD is with P+/N-well junction structure, and its multiplication region is surrounded by a virtual guard ring, with which the premature edge avalanche breakdown can be prevented. The analytical and simulation results show that the CMOS SPAD has a uniform electric field distribution in P+/N-well junction, and the breakdown voltage is as low as 8.2 V, the PDE is greater than 40% at the wavelength range of 650–950 nm, at a low excess bias voltage (light intensity is about 0.001 W/cm2), and the peak PDE at 800 nm is about 48%, the relatively low dark count rate (DCR) of 1.4 KHz is obtained.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Zheng, Lixia, Huan Hu, Ziqing Weng, Qun Yao, Jin Wu et Weifeng Sun. « Compact Active Quenching Circuit for Single Photon Avalanche Diodes Arrays ». Journal of Circuits, Systems and Computers 26, no 10 (2 mars 2017) : 1750149. http://dx.doi.org/10.1142/s0218126617501493.

Texte intégral
Résumé :
A compact quenching circuit for Single Photon Avalanche Diode (SPAD) arrays is presented. The proposed circuit preserves the advantages of small area occupation and low power consumption, since it mainly adopts the junction capacitance of the detector to sense the avalanche current. The sensing time is now limited more by the detector rather than the circuit itself. Fabricated in TSMC standard 0.35[Formula: see text][Formula: see text]m CMOS process, the proposed circuit only occupies an area of 20[Formula: see text][Formula: see text]m[Formula: see text][Formula: see text][Formula: see text]31[Formula: see text][Formula: see text]m and can operate properly with the detector biased up to 5[Formula: see text]V above breakdown. The circuit functionality has been verified by experimental measurements, operating with 64[Formula: see text][Formula: see text][Formula: see text]64 InGaAs/InP single photon avalanche diode arrays for time-of-flight-based applications.
Styles APA, Harvard, Vancouver, ISO, etc.
30

Chaves de Albuquerque, Tulio, Dylan Issartel, Raphaël Clerc, Patrick Pittet, Rémy Cellier, Dominique Golanski, Sébastien Jouan, Andreia Cathelin et Francis Calmon. « Indirect avalanche event detection of Single Photon Avalanche Diode implemented in CMOS FDSOI technology ». Solid-State Electronics 163 (janvier 2020) : 107636. http://dx.doi.org/10.1016/j.sse.2019.107636.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Wang, Chen, Jingyuan Wang, Zhiyong Xu, Rong Wang, Jianhua Li, Jiyong Zhao, Yimei Wei et Yong Lin. « Design considerations of InGaAs/InP single-photon avalanche diode for photon-counting communication ». Optik 185 (mai 2019) : 1134–45. http://dx.doi.org/10.1016/j.ijleo.2019.04.053.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Wang, Yang, Xiangliang Jin, Shengguo Cao, Yan Peng et Jun Luo. « Analysis of gate-controlled single photon avalanche diode with high photon-detection-probability ». Optics Communications 482 (mars 2021) : 126588. http://dx.doi.org/10.1016/j.optcom.2020.126588.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Savuskan, Vitali, Igor Brouk, Michael Javitt et Yael Nemirovsky. « An Estimation of Single Photon Avalanche Diode (SPAD) Photon Detection Efficiency (PDE) Nonuniformity ». IEEE Sensors Journal 13, no 5 (mai 2013) : 1637–40. http://dx.doi.org/10.1109/jsen.2013.2240154.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Gulinatti, Angelo. « Single photon avalanches diodes ». Photoniques, no 125 (2024) : 63–68. http://dx.doi.org/10.1051/photon/202412563.

Texte intégral
Résumé :
Twenty years ago the detection of single photons was little more than a scientific curiosity reserved to a few specialists. Today it is a flourishing field with an ecosystem that extends from university laboratories to large semiconductor manufacturers. This change of paradigm has been stimulated by the emergence of critical applications that rely on single photon detection, and by technical progresses in the detector field. The single photon avalanche diode has unquestionably played a major role in this process.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Jegannathan, Gobinath, Hans Ingelberts et Maarten Kuijk. « Current-Assisted Single Photon Avalanche Diode (CASPAD) Fabricated in 350 nm Conventional CMOS ». Applied Sciences 10, no 6 (22 mars 2020) : 2155. http://dx.doi.org/10.3390/app10062155.

Texte intégral
Résumé :
A current-assisted single-photon avalanche diode (CASPAD) is presented with a large and deep absorption volume combined with a small p-n junction in its middle to perform avalanche trigger detection. The absorption volume has a drift field that serves as a guiding mechanism to the photo-generated minority carriers by directing them toward the avalanche breakdown region of the p-n junction. This drift field is created by a majority current distribution in the thick (highly-resistive) epi-layer that is present because of an applied voltage bias between the p-anode of the avalanching region and the perimeter of the detector. A first CASPAD device fabricated in 350-nm CMOS shows functional operation for NIR (785-nm) photons; absorbed in a volume of 40 × 40 × 14 μm3. The CASPAD is characterized for its photon-detection probability (PDP), timing jitter, dark-count rate (DCR), and after pulsing.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Kennedy, Simon, Daniel Morrison, Dennis Delic, Mehmet Rasit Yuce et Jean-Michel Redoute. « Fully-Integrated Dickson Converters for Single Photon Avalanche Diode Arrays ». IEEE Access 9 (2021) : 10523–32. http://dx.doi.org/10.1109/access.2021.3050170.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Madonini, Francesca, et Federica Villa. « Single Photon Avalanche Diode Arrays for Time-Resolved Raman Spectroscopy ». Sensors 21, no 13 (23 juin 2021) : 4287. http://dx.doi.org/10.3390/s21134287.

Texte intégral
Résumé :
The detection of peaks shifts in Raman spectroscopy enables a fingerprint reconstruction to discriminate among molecules with neither labelling nor sample preparation. Time-resolved Raman spectroscopy is an effective technique to reject the strong fluorescence background that profits from the time scale difference in the two responses: Raman photons are scattered almost instantaneously while fluorescence shows a nanoseconds time constant decay. The combination of short laser pulses with time-gated detectors enables the collection of only those photons synchronous with the pulse, thus rejecting fluorescent ones. This review addresses time-gating issues from the sensor standpoint and identifies single photon avalanche diode (SPAD) arrays as the most suitable single-photon detectors to be rapidly and precisely time-gated without bulky, complex, or expensive setups. At first, we discuss the requirements for ideal Raman SPAD arrays, particularly focusing on the design guidelines for optimized on-chip processing electronics. Then we present some existing SPAD-based architectures, featuring specific operation modes which can be usefully exploited for Raman spectroscopy. Finally, we highlight key aspects for future ultrafast Raman platforms and highly integrated sensors capable of undistorted identification of Raman peaks across many pixels.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Madonini, Francesca, Fabio Severini, Franco Zappa et Federica Villa. « Single Photon Avalanche Diode Arrays for Quantum Imaging and Microscopy ». Advanced Quantum Technologies 4, no 7 (14 mai 2021) : 2100005. http://dx.doi.org/10.1002/qute.202100005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Bruza, Petr, Arthur Petusseau, Arin Ulku, Jason Gunn, Samuel Streeter, Kimberley Samkoe, Claudio Bruschini, Edoardo Charbon et Brian Pogue. « Single-photon avalanche diode imaging sensor for subsurface fluorescence LiDAR ». Optica 8, no 8 (20 août 2021) : 1126. http://dx.doi.org/10.1364/optica.431521.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Ding, Xun, Kai Zang, Tianzhe Zheng, Yueyang Fei, Mingqi Huang, Xiang Liu, Yuefei Wang et al. « Improving characterization capabilities in new single-photon avalanche diode research ». Review of Scientific Instruments 90, no 4 (avril 2019) : 043108. http://dx.doi.org/10.1063/1.5041502.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Labanca, I., F. Ceccarelli, A. Gulinatti, M. Ghioni et I. Rech. « Triple epitaxial single‐photon avalanche diode for multichannel timing applications ». Electronics Letters 54, no 10 (mai 2018) : 644–45. http://dx.doi.org/10.1049/el.2018.0692.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Hernández, Iván Coto, Mauro Buttafava, Gianluca Boso, Alberto Diaspro, Alberto Tosi et Giuseppe Vicidomini. « Gated STED microscopy with time-gated single-photon avalanche diode ». Biomedical Optics Express 6, no 6 (27 mai 2015) : 2258. http://dx.doi.org/10.1364/boe.6.002258.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Richardson, Justin A., Eric A. G. Webster, Lindsay A. Grant et Robert K. Henderson. « Scaleable Single-Photon Avalanche Diode Structures in Nanometer CMOS Technology ». IEEE Transactions on Electron Devices 58, no 7 (juillet 2011) : 2028–35. http://dx.doi.org/10.1109/ted.2011.2141138.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Moscatelli, Francesco, Martino Marisaldi, Piera Maccagnani, Claudio Labanti, Fabio Fuschino, Michela Prest, Alessandro Berra et al. « Radiation tests of single photon avalanche diode for space applications ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 711 (mai 2013) : 65–72. http://dx.doi.org/10.1016/j.nima.2013.01.056.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Mata Pavia, Juan, Martin Wolf et Edoardo Charbon. « Single-Photon Avalanche Diode Imagers Applied to Near-Infrared Imaging ». IEEE Journal of Selected Topics in Quantum Electronics 20, no 6 (novembre 2014) : 291–98. http://dx.doi.org/10.1109/jstqe.2014.2313983.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Qi, Lin, K. R. C. Mok, Mahdi Aminian, Edoardo Charbon et Lis K. Nanver. « UV-Sensitive Low Dark-Count PureB Single-Photon Avalanche Diode ». IEEE Transactions on Electron Devices 61, no 11 (novembre 2014) : 3768–74. http://dx.doi.org/10.1109/ted.2014.2351576.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Merck, C., P. Holl, M. Laatiaoui, G. Lutz, H. G. Moser, N. Otte, R. H. Richter et L. Strüder. « Timing properties of an avalanche diode for single photon counting ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 567, no 1 (novembre 2006) : 272–75. http://dx.doi.org/10.1016/j.nima.2006.05.106.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Gras, Gaëtan, Nigar Sultana, Anqi Huang, Thomas Jennewein, Félix Bussières, Vadim Makarov et Hugo Zbinden. « Optical control of single-photon negative-feedback avalanche diode detector ». Journal of Applied Physics 127, no 9 (7 mars 2020) : 094502. http://dx.doi.org/10.1063/1.5140824.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Zheng, Lixia, Jin Wu, Longxing Shi, Shuiqing Xi, Siyang Liu et Weifeng Sun. « Active quenching circuit for a InGaAs single-photon avalanche diode ». Journal of Semiconductors 35, no 4 (avril 2014) : 045011. http://dx.doi.org/10.1088/1674-4926/35/4/045011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Llin, Lourdes Ferre, Jarosław Kirdoda, Fiona Thorburn, Laura L. Huddleston, Zoë M. Greener, Kateryna Kuzmenko, Peter Vines et al. « High sensitivity Ge-on-Si single-photon avalanche diode detectors ». Optics Letters 45, no 23 (24 novembre 2020) : 6406. http://dx.doi.org/10.1364/ol.396756.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie