Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Dimethyl methylphosphonate.

Articles de revues sur le sujet « Dimethyl methylphosphonate »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Dimethyl methylphosphonate ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Boes, Evita. « ANALISIS, IDENTIFIKASI PRECURSOR DAN HASIL DEGRADASI SENYAWA SENJATA KIMIA MENGGUNAKAN TEKNIK GAS CHROMATOGRAPHY MASS SPECTROMETRY– ELECTRON IONISASI (GCMS-EI) ». Jurnal Kimia Terapan Indonesia 16, no 1 (10 juin 2014) : 1–9. http://dx.doi.org/10.14203/jkti.v16i1.8.

Texte intégral
Résumé :
Telah dilakukan analisis, identifikasi precursor dan hasil degradasi senyawa senjata kimia diethyl methylphosphonat (DEMP), methyl phosphonic acid (MPA) dalam sampel air dan dimethyl methyl phosphonat (DMMP), ethyl phosphonic acid (EPA) dalam sampel tanah. Contoh yang dianalisa merupakan contoh senyawa tributilphosphat (TBP) 40 ug/mL dan poliethilene glycol 56,24 ug/mL ditambahkan sebagai background dan sampel tanah kering yang berpasir. Identifikasi dilakukan dengan metode kromatografi gas spektrometri massa - elektron ionisani (GCMS-EI). Ekstraksi fasa organik pada pH netral, sililasi dari fasa air yang diuapkan, di mana triethylamine/methanol-sililasi dan kation exchange-sililasi digunakan untuk ekstraksi senyawa - senyawa precursor dan hasil degradasi sebelum diinjeksikan ke GCMS. Dari hasil analisis diperoleh waktu retensi 8,9 dan 10,97 menit masing - masing untuk diethyl methylphosphonat dan bis(trimethylsilyl) methylphosphonate dalam sampel air sedangkan dalam sampel tanah 6,62 dan 12,06 menit untuk dimethyl methylphosphonat dan bis(trimethylsilyl) ethylphosphonate. Total Ion Chromatography (TIC) yang dihasilkan dari GCMS dievaluasi dengan menggunakan Library Data Base NIST (National Institute of Standards and Technology), dan AMDIS (Automated Mass Spectral Deconvolution and Identification System). Spektrum yang dihasilkan memberikan nilai base peak pada m/z = 97 untuk diethyl methylphosphonate , m/z = 225 untuk bis(trimethylsilyl) methylphosphonate, m/z = 94 untukdimethyl methylphosphonate dan m/z = 239 untuk bis(trimethylsilyl) ethylphosphonate sedangkan retention index (RI) yang dihitung digunakan untuk mengonfirmasi masing-masing senyawa precursorKata kunci : precursor, degradsi senyawa senjata kimia, base peak , waktu retensi, Total Ion KromatografiAnalysis, precursoridentification have been done and degradation compoundsof chemical weapon diethyl methylphosphonat , methyl phosphonic acid in water matrices, dimethyl methylphosphonat and ethyl phosphonic acidin soil samples. Water used for extracting those compounds was an example of simulation that contain tributilphosphat (TBP) 40 ug/mL and poliethylene glycol 56,24 ug/mL which added as a background and dry sandy soil samples. Identification was done by using Gas Chromatographic Mass Spectrometry – Electron Ionization (GCMS-EI) method. Neutral organic extraction, evaporated water - silylation, triethylamine/methanol-silylation and cation exchanged-silylation were performed to extract the precursor’s compounds from the samples, before being analyzed by gas chromatography mass spectrometry .The result of the analysis by Gas Chromatographic Mass Spectrometry method showed that the retention time (in min) was 8,9 and 10,97 for diethyl methylphosphonat and bis(trimethylsilyl) methylphosphonate in the water sample , while the retention time in soil sample was 6,62 and 12,06 for dimethyl methylphosphonat and bis(trimethylsilyl) ethylphosphonate . The result of Total Ion Chromatography (TIC) from GCMS was evaluated using NIST (National Institute of Standards and Technology) database library and AMDIS (Automated Mass Spectral Deconvolution and Identification System). The spectrum’s result gave the value of base peak, which are m/z = 97for diethyl methylphosphonat, m/z= 225 for bis(trimethylsilyl) methylphosphonate , m/z = 94 for dimethyl methylphosphonat and m/z = 239 for bis(trimethylsilyl) ethylphosphonate. On the other hand, the retention indice (RI) calculation was used to get the confirmation of each compounds of precursors. Key word : precursor, degradation of chemical weapon, base peak, retention time, totalion chromatography.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Pan, Yong, Tengxiao Guo, Genwei Zhang, Junchao Yang, Liu Yang et Bingqing Cao. « Detection of organophosphorus compounds using a surface acoustic wave array sensor based on supramolecular self-assembling imprinted films ». Analytical Methods 12, no 17 (2020) : 2206–14. http://dx.doi.org/10.1039/d0ay00211a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Tzou, T. Z., et S. W. Weller. « Catalytic Oxidation of Dimethyl Methylphosphonate ». Journal of Catalysis 146, no 2 (avril 1994) : 370–74. http://dx.doi.org/10.1006/jcat.1994.1075.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Fan, Chuan-Lei, et Li-Sheng Wang. « Vapor Pressure of Dimethyl Phosphite and Dimethyl Methylphosphonate ». Journal of Chemical & ; Engineering Data 55, no 1 (14 janvier 2010) : 479–81. http://dx.doi.org/10.1021/je900258f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Aschmann, Sara M., Ernesto C. Tuazon et Roger Atkinson. « Atmospheric Chemistry of Dimethyl Phosphonate, Dimethyl Methylphosphonate, and Dimethyl Ethylphosphonate ». Journal of Physical Chemistry A 109, no 51 (décembre 2005) : 11828–36. http://dx.doi.org/10.1021/jp055286e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Ampadu Boateng, Derrick, Gennady L. Gutsev, Puru Jena et Katharine Moore Tibbetts. « Ultrafast coherent vibrational dynamics in dimethyl methylphosphonate radical cation ». Physical Chemistry Chemical Physics 20, no 7 (2018) : 4636–40. http://dx.doi.org/10.1039/c7cp07261a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Rusu, Camelia N., et John T. Yates. « Photooxidation of Dimethyl Methylphosphonate on TiO2Powder ». Journal of Physical Chemistry B 104, no 51 (décembre 2000) : 12299–305. http://dx.doi.org/10.1021/jp002562a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Li, Bolong, Xinwei Chen, Chen Su, Yutong Han, Huaizhang Wang, Min Zeng, Ying Wang, Ting Liang, Zhi Yang et Lin Xu. « Enhanced dimethyl methylphosphonate detection based on two-dimensional WSe2 nanosheets at room temperature ». Analyst 145, no 24 (2020) : 8059–67. http://dx.doi.org/10.1039/d0an01671c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kim, Daeyoon, Dawoon Jung, Jeong Kyun Noh et Jae-Hee Han. « Graphene Chemocapacitive Sensors for Dimethyl Methylphosphonate Detection ». Science of Advanced Materials 10, no 9 (1 septembre 2018) : 1268–73. http://dx.doi.org/10.1166/sam.2018.3309.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Head, Ashley R., Xin Tang, Zachary Hicks, Linjie Wang, Hannes Bleuel, Scott Holdren, Lena Trotochaud et al. « Thermal desorption of dimethyl methylphosphonate from MoO3 ». Catalysis, Structure & ; Reactivity 3, no 1-2 (3 mars 2017) : 112–18. http://dx.doi.org/10.1080/2055074x.2017.1278891.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Aurian-Blajeni, B., et M. M. Boucher. « Interaction of dimethyl methylphosphonate with metal oxides ». Langmuir 5, no 1 (janvier 1989) : 170–74. http://dx.doi.org/10.1021/la00085a032.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Zheng, Tiancheng, et Xiuyuan Ni. « Loading an organophosphorous flame retardant into halloysite nanotubes for modifying UV-curable epoxy resin ». RSC Advances 6, no 62 (2016) : 57122–30. http://dx.doi.org/10.1039/c6ra08178a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Rockley, N. L., et M. G. Rockley. « The FT-IR Analysis by PAS and KBr Pellet of Cation-Exchanged Clay Mineral and Phosphonate Complexes ». Applied Spectroscopy 41, no 3 (mars 1987) : 471–75. http://dx.doi.org/10.1366/0003702874448797.

Texte intégral
Résumé :
A comparison is made between the KBr pellet and FT-IR/PAS spectra of a series of interlamellar-cation-exchanged montmorillonites. Spectra of these clay minerals after adsorption of dimethyl methylphosphonate are also compared by the two spectroscopic methods. It is shown that the two infrared methods yield complementary spectral information, while FT-IR/PAS produces spectra with better definition of the adsorbate bands in all cases and superior reliability for observation of interlamellar ion-induced spectral shifts. Dimethyl methylphosphonate is shown to undergo interlamellar insertion, with bonding occurring directly through the P=0 moiety to the cation of the clay mineral. The strength of the bonding varies with the charge density of the cation.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Henych, Jiří, Andreas Mattsson, Jakub Tolasz, Václav Štengl et Lars Österlund. « Solar light decomposition of warfare agent simulant DMMP on TiO2/graphene oxide nanocomposites ». Catalysis Science & ; Technology 9, no 8 (2019) : 1816–24. http://dx.doi.org/10.1039/c9cy00059c.

Texte intégral
Résumé :
Solar light-induced photodecomposition of organophosphorus warfare agent simulant dimethyl methylphosphonate (DMMP) on the surfaces of TiO2/graphene oxide (GO) nanocomposites was studied by in situ DRIFT spectroscopy.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Tang, Xin, Zachary Hicks, Linjie Wang, Gerd Ganteför, Kit H. Bowen, Roman Tsyshevsky, Jianwei Sun et Maija M. Kuklja. « Adsorption and decomposition of dimethyl methylphosphonate on size-selected (MoO3)3 clusters ». Physical Chemistry Chemical Physics 20, no 7 (2018) : 4840–50. http://dx.doi.org/10.1039/c7cp08427g.

Texte intégral
Résumé :
The adsorption and decomposition of dimethyl methylphosphonate (DMMP), a chemical warfare agent (CWA) simulant, on size-selected molybdenum oxide trimer clusters, i.e. (MoO3)3, was studied both experimentally and theoretically.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Aguila, Ailette, Kevin E. O'Shea, Thomas Tobien et Klaus-Dieter Asmus. « Reactions of Hydroxyl Radical with Dimethyl Methylphosphonate and Diethyl Methylphosphonate. A Fundamental Mechanistic Study ». Journal of Physical Chemistry A 105, no 33 (août 2001) : 7834–39. http://dx.doi.org/10.1021/jp002367w.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Head, Ashley R., Roman Tsyshevsky, Lena Trotochaud, Bryan Eichhorn, Maija M. Kuklja et Hendrik Bluhm. « Electron Spectroscopy and Computational Studies of Dimethyl Methylphosphonate ». Journal of Physical Chemistry A 120, no 12 (22 mars 2016) : 1985–91. http://dx.doi.org/10.1021/acs.jpca.6b01098.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Nogueira, M. F. M., et E. M. Fisher. « Effects of dimethyl methylphosphonate on premixed methane flames ». Combustion and Flame 132, no 3 (février 2003) : 352–63. http://dx.doi.org/10.1016/s0010-2180(02)00464-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Hegde, R. I., C. M. Greenlief et J. M. White. « Surface chemistry of dimethyl methylphosphonate on rhodium(100) ». Journal of Physical Chemistry 89, no 13 (juin 1985) : 2886–91. http://dx.doi.org/10.1021/j100259a035.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Cao, Lixin, Steven L. Suib, Xia Tang et Sunita Satyapal. « Thermocatalytic Decomposition of Dimethyl Methylphosphonate on Activated Carbon ». Journal of Catalysis 197, no 2 (janvier 2001) : 236–43. http://dx.doi.org/10.1006/jcat.2000.3090.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Rusu, Camelia N., et John T. Yates. « Adsorption and Decomposition of Dimethyl Methylphosphonate on TiO2 ». Journal of Physical Chemistry B 104, no 51 (décembre 2000) : 12292–98. http://dx.doi.org/10.1021/jp002560q.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Ewing, K. J., D. M. Dagenais, F. Bucholtz et I. D. Aggarwal. « Fiber-Optic Raman Detection of Trace Levels of Phosphonate Vapors Chemisorbed onto an Alumina Substrate ». Applied Spectroscopy 50, no 5 (mai 1996) : 614–18. http://dx.doi.org/10.1366/0003702963905871.

Texte intégral
Résumé :
Detection of ppm(v) levels of the nerve agent simulants dimethyl methylphosphonate (DMMP) and diisopropyl methylphosphonate (DIMP) by chemisorption to an alumina surface followed by fiberoptic Raman spectroscopic determination is described. Real-time measurements of the increase in the Raman line intensities with respect to time for DMMP and DIMP chemisorption to alumina are presented. A detection limit at the 95% confidence interval of 6 ppm(v) is calculated for DMMP vapors at a vapor flow rate of 100 mL/min. Factors which limit lower detection limits are identified and possible solutions presented.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Kim, Taejun, Ju Hyun Yang, So Jeong Park, Huu-Quang Nguyen, Jeongkwon Kim, Ki-Ju Yee, Heesoo Jung, Jun-Gill Kang et Youngku Sohn. « Photo-decontamination of chemical warfare dimethyl methylphosphonate, dimethyl phosphite, diethyl methylphosphonate, diethyl phosphite model molecules on Al and oxidized Al foils ». Applied Catalysis B : Environmental 284 (mai 2021) : 119623. http://dx.doi.org/10.1016/j.apcatb.2020.119623.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Dirk, Shawn M., Stephen W. Howell, B. Katherine Price, Hongyou Fan, Cody Washburn, David R. Wheeler, James M. Tour, Joshua Whiting et R. Joseph Simonson. « Vapor Sensing Using Conjugated Molecule-Linked Au Nanoparticles in a Silica Matrix ». Journal of Nanomaterials 2009 (2009) : 1–9. http://dx.doi.org/10.1155/2009/481270.

Texte intégral
Résumé :
Cross-linked assemblies of nanoparticles are of great value as chemiresistor-type sensors. Herein, we report a simple method to fabricate a chemiresistor-type sensor that minimizes the swelling transduction mechanism while optimizing the change in dielectric response. Sensors prepared with this methodology showed enhanced chemoselectivity for phosphonates which are useful surrogates for chemical weapons. Chemoselective sensors were fabricated using an aqueous solution of gold nanoparticles that were then cross-linked in the presence of the silica precursor, tetraethyl orthosilicate with theα-,ω-dithiolate (which is derived from the in situ deprotection of 1,4-di(Phenylethynyl-4′,4″-diacetylthio)-benzene (1) with wet triethylamine). The cross-linked nanoparticles and silica matrix were drop coated onto interdigitated electrodes having 8 μm spacing. Samples were exposed to a series of analytes including dimethyl methylphosphonate (DMMP), octane, and toluene. A limit of detection was obtained for each analyte. Sensors assembled in this fashion were more sensitive to dimethyl methylphosphonate than to octane by a factor of 1000.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Kittle, Joshua, Benjamin Fisher, Courtney Kunselman, Aimee Morey et Andrea Abel. « Vapor Selectivity of a Natural Photonic Crystal to Binary and Tertiary Mixtures Containing Chemical Warfare Agent Simulants ». Sensors 20, no 1 (25 décembre 2019) : 157. http://dx.doi.org/10.3390/s20010157.

Texte intégral
Résumé :
Vapor sensing via light reflected from photonic crystals has been increasingly studied as a means to rapidly identify analytes, though few studies have characterized vapor mixtures or chemical warfare agent simulants via this technique. In this work, light reflected from the natural photonic crystals found within the wing scales of the Morpho didius butterfly was analyzed after exposure to binary and tertiary mixtures containing dimethyl methylphosphonate, a nerve agent simulant, and dichloropentane, a mustard gas simulant. Distinguishable spectra were generated with concentrations tested as low as 30 ppm and 60 ppm for dimethyl methylphosphonate and dichloropentane, respectively. Individual vapors, as well as mixtures, yielded unique responses over a range of concentrations, though the response of binary and tertiary mixtures was not always found to be additive. Thus, while selective and sensitive to vapor mixtures containing chemical warfare agent simulants, this technique presents challenges to identifying these simulants at a sensitivity level appropriate for their toxicity.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Rogacz, Diana, Jarosław Lewkowski, Zbigniew Malinowski, Agnieszka Matusiak, Marta Morawska et Piotr Rychter. « Effect of New Thiophene-Derived Aminophosphonic Derivatives on Growth of Terrestrial Plants. Part 2. Their Ecotoxicological Impact and Phytotoxicity Test Toward Herbicidal Application in Agriculture ». Molecules 23, no 12 (1 décembre 2018) : 3173. http://dx.doi.org/10.3390/molecules23123173.

Texte intégral
Résumé :
Background: The aim of this work was to evaluate phytotoxicity of the thiophene derivatives against three persistent weeds of a high degree of resistance (Galinsoga parviflora Cav., Rumex acetosa L., and Chenopodium album) as well as their ecotoxicological impact on Heterocypris incongruens. In addition, Aliivibrio fischeri was measured. Two of eight described aminophosphonates, namely dimethyl N-(2-methoxyphenyl)amino(2-thienyl)methylphosphonate (2d) and dimethyl N-(tert-butyl)- (2-thienyl)methylphosphonate (2h), have never been reported before. Methods: The phytotoxicity of tested aminophosphonates toward their potential application as soil-applied herbicides was evaluated according to the OECD 208 Guideline. Ecotoxicological properties of investigated compounds were made using the OSTRACODTOXKITTM and Microtox® tests. Results: Obtained results showed that four aminophosphonates have interesting herbicidal properties and N-(2-methylphenyl)amino- (2-thienyl)methylphosphonate (2a) was found to kill efficiently the most resistant plant Chenopodium album. None of the tested compounds showed important toxicity against Aliivibrio fischeri. However, their toxic impact on Heterocypris incongruens was significantly elevated. Conclusions: The aminophosphonate 2a showed herbicidal potential and it is not toxic against tested bacteria (EC50 over 1000 mg/L). It was found to be moderately toxic against ostracods [mortality 48% at 10 mg/kg of soil dry weight (s.d.w.)] and this problem should be solved by the use of the controlled release from a polymeric carrier.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Pinkard, Brian R., Shreyas Shetty, John C. Kramlich, Per G. Reinhall et Igor V. Novosselov. « Hydrolysis of Dimethyl Methylphosphonate (DMMP) in Hot-Compressed Water ». Journal of Physical Chemistry A 124, no 41 (16 septembre 2020) : 8383–89. http://dx.doi.org/10.1021/acs.jpca.0c05104.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Henderson, Michael A., et J. M. White. « Adsorption and decomposition of dimethyl methylphosphonate on platinum(111). » Journal of the American Chemical Society 110, no 21 (octobre 1988) : 6939–47. http://dx.doi.org/10.1021/ja00229a002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Uhm, Han S., Soon C. Cho, Yong C. Hong, Yang G. Park et Ju S. Park. « Destruction of dimethyl methylphosphonate using a microwave plasma torch ». Applied Physics Letters 92, no 7 (18 février 2008) : 071503. http://dx.doi.org/10.1063/1.2844859.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Mitchell, Mark B., V. N. Sheinker et Eric A. Mintz. « Adsorption and Decomposition of Dimethyl Methylphosphonate on Metal Oxides ». Journal of Physical Chemistry B 101, no 51 (décembre 1997) : 11192–203. http://dx.doi.org/10.1021/jp972724b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Bertilsson, Lars, Karin Potje-Kamloth, Hans-Dieter Liess, Isak Engquist et Bo Liedberg. « Adsorption of Dimethyl Methylphosphonate on Self-Assembled Alkanethiolate Monolayers ». Journal of Physical Chemistry B 102, no 7 (février 1998) : 1260–69. http://dx.doi.org/10.1021/jp973215c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Holtzclaw, James R., Jeffrey R. Wyatt et Joseph E. Campana. « Structure and fragmentation of dimethyl methylphosphonate and trimethyl phosphite ». Organic Mass Spectrometry 20, no 2 (février 1985) : 90–97. http://dx.doi.org/10.1002/oms.1210200205.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Cao, Lixin, Scott R. Segal, Steven L. Suib, Xia Tang et Sunita Satyapal. « Thermocatalytic Oxidation of Dimethyl Methylphosphonate on Supported Metal Oxides ». Journal of Catalysis 194, no 1 (août 2000) : 61–70. http://dx.doi.org/10.1006/jcat.2000.2914.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Segal, Scott R., Lixin Cao, Steven L. Suib, Xia Tang et Sunita Satyapal. « Thermal Decomposition of Dimethyl Methylphosphonate over Manganese Oxide Catalysts ». Journal of Catalysis 198, no 1 (février 2001) : 66–76. http://dx.doi.org/10.1006/jcat.2000.3126.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Trubitsyn, Dmitry A., et Alexander V. Vorontsov. « Experimental Study of Dimethyl Methylphosphonate Decomposition over Anatase TiO2 ». Journal of Physical Chemistry B 109, no 46 (novembre 2005) : 21884–92. http://dx.doi.org/10.1021/jp053793q.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Gordon, Wesley O., Brian M. Tissue et John R. Morris. « Adsorption and Decomposition of Dimethyl Methylphosphonate on Y2O3 Nanoparticles ». Journal of Physical Chemistry C 111, no 8 (6 février 2007) : 3233–40. http://dx.doi.org/10.1021/jp0650376.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Dalavi, Swapnil, Mengqing Xu, Boris Ravdel, Liu Zhou et Brett L. Lucht. « Nonflammable Electrolytes for Lithium-Ion Batteries Containing Dimethyl Methylphosphonate ». Journal of The Electrochemical Society 157, no 10 (2010) : A1113. http://dx.doi.org/10.1149/1.3473828.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Moss, John A., Steven H. Szczepankiewicz, Eleanor Park et Michael R. Hoffmann. « Adsorption and Photodegradation of Dimethyl Methylphosphonate Vapor at TiO2Surfaces ». Journal of Physical Chemistry B 109, no 42 (octobre 2005) : 19779–85. http://dx.doi.org/10.1021/jp052057j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Chatterjee, B. K., R. Tosh et R. Johnsen. « Ion/molecule reactions of atmospheric ions with dimethyl-methylphosphonate ». International Journal of Mass Spectrometry and Ion Processes 103, no 2-3 (janvier 1991) : 81–92. http://dx.doi.org/10.1016/0168-1176(91)80080-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Wilmsmeyer, Amanda R., Joshua Uzarski, Patrick J. Barrie et John R. Morris. « Interactions and Binding Energies of Dimethyl Methylphosphonate and Dimethyl Chlorophosphate with Amorphous Silica ». Langmuir 28, no 30 (20 juillet 2012) : 10962–67. http://dx.doi.org/10.1021/la301938f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Cory, Marshall G., DeCarlos E. Taylor, Steven W. Bunte, Keith Runge, Joseph L. Vasey et Douglas S. Burns. « Theoretical Methodology for Prediction of Tropospheric Oxidation of Dimethyl Phosphonate and Dimethyl Methylphosphonate ». Journal of Physical Chemistry A 115, no 10 (17 mars 2011) : 1946–54. http://dx.doi.org/10.1021/jp107804m.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Yang, Szu-Wei, David C. Doetschman, Jürgen T. Schulte, Justin B. Sambur, Charles W. Kanyi, Jack D. Fox, Chrispin O. Kowenje, Barry R. Jones et Neesha D. Sherma. « Sodium X-type faujasite zeolite decomposition of dimethyl methylphosphonate (DMMP) to methylphosphonate : Nucleophilic zeolite reactions I ». Microporous and Mesoporous Materials 92, no 1-3 (juin 2006) : 56–60. http://dx.doi.org/10.1016/j.micromeso.2005.12.018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Chung, You Kyoung, Seonggyun Ha, Tae Gyun Woo, Young Dok Kim, Changsik Song et Seong Kyu Kim. « Binding thiourea derivatives with dimethyl methylphosphonate for sensing nerve agents ». RSC Advances 9, no 19 (2019) : 10693–701. http://dx.doi.org/10.1039/c9ra00314b.

Texte intégral
Résumé :
Binding energies and geometries of 1 : 1 complexes formed between nerve agent simulant DMMP and 13 thiourea derivatives (TUn) were calculated and compared with the sensing efficiencies of TUn from QCM analysis.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Long, Jeffrey W., Christopher N. Chervin, Robert B. Balow, Seokmin Jeon, Joel B. Miller, Maya E. Helms, Jeffrey C. Owrutsky, Debra R. Rolison et Kenan P. Fears. « Zirconia-Based Aerogels for Sorption and Degradation of Dimethyl Methylphosphonate ». Industrial & ; Engineering Chemistry Research 59, no 44 (25 septembre 2020) : 19584–92. http://dx.doi.org/10.1021/acs.iecr.0c02983.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Segal, Scott R., Steven L. Suib, Xia Tang et Sunita Satyapal. « Photoassisted Decomposition of Dimethyl Methylphosphonate over Amorphous Manganese Oxide Catalysts ». Chemistry of Materials 11, no 7 (juillet 1999) : 1687–95. http://dx.doi.org/10.1021/cm980664w.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Tesfai, Teweldemedhin M., V. N. Sheinker et Mark B. Mitchell. « Decomposition of Dimethyl Methylphosphonate (DMMP) on Alumina-Supported Iron Oxide ». Journal of Physical Chemistry B 102, no 38 (septembre 1998) : 7299–302. http://dx.doi.org/10.1021/jp980690h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Lee, K. Y., M. Houalla, D. M. Hercules et W. K. Hall. « Catalytic Oxidative Decomposition of Dimethyl Methylphosphonate over Cu-Substituted Hydroxyapatite ». Journal of Catalysis 145, no 1 (janvier 1994) : 223–31. http://dx.doi.org/10.1006/jcat.1994.1026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Lee, Young-Jun, Jong-Gyu Kim, Joo-Hyung Kim, Jaesook Yun et Won Jun Jang. « Detection of Dimethyl Methylphosphonate (DMMP) Using Polyhedral Oligomeric Silsesquioxane (POSS) ». Journal of Nanoscience and Nanotechnology 18, no 9 (1 septembre 2018) : 6565–69. http://dx.doi.org/10.1166/jnn.2018.15698.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Lama, Sanjeeb, Jinuk Kim, Sivalingam Ramesh, Young-Jun Lee, Jihyun Kim et Joo-Hyung Kim. « Highly Sensitive Hybrid Nanostructures for Dimethyl Methyl Phosphonate Detection ». Micromachines 12, no 6 (31 mai 2021) : 648. http://dx.doi.org/10.3390/mi12060648.

Texte intégral
Résumé :
Nanostructured materials synthesized by the hydrothermal and thermal reduction process were tested to detect the dimethyl methylphosphonate (DMMP) as a simulant for chemical warfare agents. Manganese oxide nitrogen-doped graphene oxide with polypyrrole (MnO2@NGO/PPy) exhibited the sensitivity of 51 Hz for 25 ppm of DMMP and showed the selectivity of 1.26 Hz/ppm. Nitrogen-doped multi-walled carbon nanotube (N-MWCNT) demonstrated good linearity with a correlation coefficient of 0.997. A comparison between a surface acoustic wave and quartz crystal microbalance sensor exhibited more than 100-times higher sensitivity of SAW sensor than QCM sensor.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Ampadu Boateng, Derrick, Mi’Kayla Word et Katharine Tibbetts. « Probing Coherent Vibrations of Organic Phosphonate Radical Cations with Femtosecond Time-Resolved Mass Spectrometry ». Molecules 24, no 3 (31 janvier 2019) : 509. http://dx.doi.org/10.3390/molecules24030509.

Texte intégral
Résumé :
Organic phosphates and phosphonates are present in a number of cellular components that can be damaged by exposure to ionizing radiation. This work reports femtosecond time-resolved mass spectrometry (FTRMS) studies of three organic phosphonate radical cations that model the DNA sugar-phosphate backbone: dimethyl methylphosphonate (DMMP), diethyl methylphosphonate (DEMP), and diisopropyl methylphosphonate (DIMP). Upon ionization, each molecular radical cation exhibits unique oscillatory dynamics in its ion yields resulting from coherent vibrational excitation. DMMP has particularly well-resolved 45 fs ( 732 ± 28 cm − 1 ) oscillations with a weak feature at 610–650 cm − 1 , while DIMP exhibits bimodal oscillations with a period of ∼55 fs and two frequency features at 554 ± 28 and 670–720 cm − 1 . In contrast, the oscillations in DEMP decay too rapidly for effective resolution. The low- and high-frequency oscillations in DMMP and DIMP are assigned to coherent excitation of the symmetric O–P–O bend and P–C stretch, respectively. The observation of the same ionization-induced coherently excited vibrations in related molecules suggests a possible common excitation pathway in ionized organophosphorus compounds of biological relevance, while the distinct oscillatory dynamics in each molecule points to the potential use of FTRMS to distinguish among fragment ions produced by related molecules.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie