Articles de revues sur le sujet « Dimensional Nanometrology »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Dimensional Nanometrology.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 19 meilleurs articles de revues pour votre recherche sur le sujet « Dimensional Nanometrology ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

MISUMI, Ichiko. « Standard Sample in Dimensional Nanometrology ». Journal of the Japan Society for Precision Engineering 74, no 3 (2008) : 222–25. http://dx.doi.org/10.2493/jjspe.74.222.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Yacoot, Andrew, et Ludger Koenders. « Recent developments in dimensional nanometrology using AFMs ». Measurement Science and Technology 22, no 12 (25 octobre 2011) : 122001. http://dx.doi.org/10.1088/0957-0233/22/12/122001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Töpfer, Susanne C. N., Uwe Nehse et Gerhard Linß. « Automated inspections for dimensional micro- and nanometrology ». Measurement 40, no 2 (février 2007) : 243–54. http://dx.doi.org/10.1016/j.measurement.2006.06.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Simão, C., D. Tuchapsky, W. Khunsin, A. Amann, M. A. Morris et C. M. Sotomayor Torres. « Dimensional and defectivity nanometrology of directed self-assembly patterns ». physica status solidi (c) 12, no 3 (25 février 2015) : 267–70. http://dx.doi.org/10.1002/pssc.201400211.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Malinovski, I., R. S. França, M. S. Lima, M. S. Bessa, C. R. Silva et I. B. Couceiro. « High-resolution interferometic microscope for traceable dimensional nanometrology in Brazil ». Journal of Physics : Conference Series 733 (juillet 2016) : 012060. http://dx.doi.org/10.1088/1742-6596/733/1/012060.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Tondare, Vipin N., John S. Villarrubia et András E. Vladár. « Three-Dimensional (3D) Nanometrology Based on Scanning Electron Microscope (SEM) Stereophotogrammetry ». Microscopy and Microanalysis 23, no 5 (18 septembre 2017) : 967–77. http://dx.doi.org/10.1017/s1431927617012521.

Texte intégral
Résumé :
AbstractThree-dimensional (3D) reconstruction of a sample surface from scanning electron microscope (SEM) images taken at two perspectives has been known for decades. Nowadays, there exist several commercially available stereophotogrammetry software packages. For testing these software packages, in this study we used Monte Carlo simulated SEM images of virtual samples. A virtual sample is a model in a computer, and its true dimensions are known exactly, which is impossible for real SEM samples due to measurement uncertainty. The simulated SEM images can be used for algorithm testing, development, and validation. We tested two stereophotogrammetry software packages and compared their reconstructed 3D models with the known geometry of the virtual samples used to create the simulated SEM images. Both packages performed relatively well with simulated SEM images of a sample with a rough surface. However, in a sample containing nearly uniform and therefore low-contrast zones, the height reconstruction error was ≈46%. The present stereophotogrammetry software packages need further improvement before they can be used reliably with SEM images with uniform zones.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Jäger, Gerd, T. Hausotte, Eberhard Manske, H. J. Büchner, R. Mastylo, N. Dorozhovets, R. Füßl et R. Grünwald. « Nanometrology – Nanopositioning- and Nanomeasuring Machine with Integrated Nanopobes ». Materials Science Forum 505-507 (janvier 2006) : 7–12. http://dx.doi.org/10.4028/www.scientific.net/msf.505-507.7.

Texte intégral
Résumé :
The paper describes the operation of a high-precision wide scale three-dimensional nanopositioning and nanomeasuring machine (NPM-Machine) having a resolution of 0,1 nm over the positioning and measuring range of 25 mm x 25 mm x 5 mm. The NPM-Machine has been developed by the Technische Universität Ilmenau and manufactured by the SIOS Meßtechnik GmbH Ilmenau. The machines are operating successfully in several German and foreign research institutes including the Physikalisch-Technische Bundesanstalt (PTB). The integration of several, optical and tactile probe systems and scanning force microscopes makes the NPM-Machine suitable for various tasks, such as large-area scanning probe microscopy, mask and water inspection, circuit testing as well as measuring optical and mechanical precision work pieces such as micro lens arrays, concave lenses, mm-step height standards.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Jorio, Ado. « Raman Spectroscopy in Graphene-Based Systems : Prototypes for Nanoscience and Nanometrology ». ISRN Nanotechnology 2012 (6 décembre 2012) : 1–16. http://dx.doi.org/10.5402/2012/234216.

Texte intégral
Résumé :
Raman spectroscopy is a powerful tool to characterize the different types of sp2 carbon nanostructures, including two-dimensional graphene, one-dimensional nanotubes, and the effect of disorder in their structures. This work discusses why sp2 nanocarbons can be considered as prototype materials for the development of nanoscience and nanometrology. The sp2 nanocarbon structures are quickly introduced, followed by a discussion on how this field evolved in the past decades. In sequence, their rather rich Raman spectra composed of many peaks induced by single- and multiple-resonance effects are introduced. The properties of the main Raman peaks are then described, including their dependence on both materials structure and external factors, like temperature, pressure, doping, and environmental effects. Recent applications that are pushing the technique limits, such as multitechnique approach and in situ nanomanipulation, are highlighted, ending with some challenges for new developments in this field.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Krumrey, Michael, Gudrun Gleber, Frank Scholze et Jan Wernecke. « Synchrotron radiation-based x-ray reflection and scattering techniques for dimensional nanometrology ». Measurement Science and Technology 22, no 9 (8 août 2011) : 094032. http://dx.doi.org/10.1088/0957-0233/22/9/094032.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Endres, J., A. Diener, M. Wurm et B. Bodermann. « Investigations of the influence of common approximations in scatterometry for dimensional nanometrology ». Measurement Science and Technology 25, no 4 (5 mars 2014) : 044004. http://dx.doi.org/10.1088/0957-0233/25/4/044004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Schuler, Alexander, Albert Weckenmann et Tino Hausotte. « Setup and evaluation of a sensor tilting system for dimensional micro- and nanometrology ». Measurement Science and Technology 25, no 6 (30 avril 2014) : 064010. http://dx.doi.org/10.1088/0957-0233/25/6/064010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Gonda, S., T. Kurosawa et Y. Tanimura. « Mechanical performances of a symmetrical, monolithic three-dimensional fine-motion stage for nanometrology ». Measurement Science and Technology 10, no 11 (30 septembre 1999) : 986–93. http://dx.doi.org/10.1088/0957-0233/10/11/302.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Thiesler, Jan, Thomas Ahbe, Rainer Tutsch et Gaoliang Dai. « True 3D Nanometrology : 3D-Probing with a Cantilever-Based Sensor ». Sensors 22, no 1 (31 décembre 2021) : 314. http://dx.doi.org/10.3390/s22010314.

Texte intégral
Résumé :
State of the art three-dimensional atomic force microscopes (3D-AFM) cannot measure three spatial dimensions separately from each other. A 3D-AFM-head with true 3D-probing capabilities is presented in this paper. It detects the so-called 3D-Nanoprobes CD-tip displacement with a differential interferometer and an optical lever. The 3D-Nanoprobe was specifically developed for tactile 3D-probing and is applied for critical dimension (CD) measurements. A calibrated 3D-Nanoprobe shows a selectivity ratio of 50:1 on average for each of the spatial directions x, y, and z. Typical stiffness values are kx = 1.722 ± 0.083 N/m, ky = 1.511 ± 0.034 N/m, and kz = 1.64 ± 0.16 N/m resulting in a quasi-isotropic ratio of the stiffness of 1.1:0.9:1.0 in x:y:z, respectively. The probing repeatability of the developed true 3D-AFM shows a standard deviation of 0.18 nm, 0.31 nm, and 0.83 nm for x, y, and z, respectively. Two CD-line samples type IVPS100-PTB, which were perpendicularly mounted to each other, were used to test the performance of the developed true 3D-AFM: repeatability, long-term stability, pitch, and line edge roughness and linewidth roughness (LER/LWR), showing promising results.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Stöhr, Frederik, Jonas Michael-Lindhard, Hugh Simons, Henning Friis Poulsen, Jörg Hübner, Ole Hansen, Joergen Garnaes et Flemming Jensen. « Three-dimensional nanometrology of microstructures by replica molding and large-range atomic force microscopy ». Microelectronic Engineering 141 (juin 2015) : 6–11. http://dx.doi.org/10.1016/j.mee.2014.11.026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Sun, Zhong Yuan, Alexander Schuler et Tino Hausotte. « Development of a 3D Tunneling Current Probing System for Micro- and Nano-Coordinate Metrology ». Applied Mechanics and Materials 870 (septembre 2017) : 126–31. http://dx.doi.org/10.4028/www.scientific.net/amm.870.126.

Texte intégral
Résumé :
The demands for precision measurement of three dimensional micro-and nanogeometries over a large area have rapidly increased during the last few years. To meet such requirements, many different nanometre resolving 3D capable probing sensors and corresponding 3D positioning systems to operate the sensors for 3D measurements have been developed. The mechanical contact-free, electrical work piece probing based on the scanning tunneling microscopy principle offers new possibilities for 3D micro coordinate measurements as well as for nanometre resolved topography measurements in micro-and nanometrology. This paper introduces an updated version of this probing sensor system extended with a 3D movable piezo scanner to directly detect its probing direction. With the magnitude and the direction of the contact vector forwarded to the position control of the nanopositioning and nanomeasuring machine NMM-1 all of the 3D measurement commands of NMM-1 can be utilized, allowing 3D surface scans and especially 3D free-form surface scans.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Song, Se Ahn, Tatsumi Hirano, Jong Bong Park, Kazutoshi Kaji, Ki Hong Kim et Shohei Terada. « Searching Ultimate Nanometrology for AlOx Thickness in Magnetic Tunnel Junction by Analytical Electron Microscopy and X-ray Reflectometry ». Microscopy and Microanalysis 11, no 5 (28 septembre 2005) : 431–45. http://dx.doi.org/10.1017/s1431927605050580.

Texte intégral
Résumé :
Practical analyses of the structures of ultrathin multilayers in tunneling magneto resistance (TMR) and Magnetic Random Access Memory (MRAM) devices have been a challenging task because layers are very thin, just 1–2 nm thick. Particularly, the thinness (∼1 nm) and chemical properties of the AlOx barrier layer are critical to its magnetic tunneling property. We focused on evaluating the current TEM analytical methods by measuring the thickness and composition of an AlOx layer using several TEM instruments, that is, a round robin test, and cross-checked the thickness results with an X-ray reflectometry (XRR) method. The thickness measured by using HRTEM, HAADF-STEM, and zero-loss images was 1.1 nm, which agreed with the results from the XRR method. On the other hand, TEM-EELS measurements showed 1.8 nm for an oxygen 2D-EELS image and 3.0 nm for an oxygen spatially resolved EELS image, whereas the STEM-EDS line profile showed 2.5 nm in thickness. However, after improving the TEM-EELS measurements by acquiring time-resolved images, the measured thickness of the AlOx layer was improved from 1.8 nm to 1.4 nm for the oxygen 2D-EELS image and from 3.0 nm to 2.0 nm for the spatially resolved EELS image, respectively. Also the observed thickness from the EDS line profile was improved to 1.4 nm after more careful optimization of the experimental parameters. We found that EELS and EDS of one-dimensional line scans or two-dimensional elemental mapping gave a larger AlOx thickness even though much care was taken. The reasons for larger measured values can be found from several factors such as sample drift, beam damage, probe size, beam delocalization, and multiple scattering for the EDS images, and chromatic aberration, diffraction limit due to the aperture, delocalization, alignment between layered direction in samples, and energy dispersion direction in the EELS instrument for EELS images. In the case of STEM-EDS mapping with focused nanoprobes, it is always necessary to reduce beam damage and sample drift while trying to maintain the signal-to-noise (S/N) ratio as high as possible. Also we confirmed that the time-resolved TEM-EELS acquisition technique improves S/N ratios of elemental maps without blurring the images.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Bosse, Harald, et Günter Wilkening. « Dimensionelle Nanometrologie in der PTB – eine Übersicht (Dimensional Nanometrology at PTB – a Survey) ». tm - Technisches Messen 73, no 1/2006 (1 janvier 2006). http://dx.doi.org/10.1524/teme.2006.73.1.4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Dai, Gaoliang, et Xiukun Hu. « Correction of Interferometric High-Order Nonlinearity Error in Metrological Atomic Force Microscopy ». Nanomanufacturing and Metrology, 6 octobre 2022. http://dx.doi.org/10.1007/s41871-022-00154-6.

Texte intégral
Résumé :
AbstractMetrological atomic force microscopes (Met. AFMs) with built-in interferometers are one of the main workhorses for versatile dimensional nanometrology. The interferometric nonlinearity error, particularly the high-order (i.e., 3rd- and 4th-order) nonlinearity errors, is a dominant error source for further improving their metrology performance, which cannot be corrected using the conventional Heydemann correction method. To solve this problem, two new methods were developed. One uses a capacitive sensor embedded in the Met. AFM, and the other applies an external physical artifact with a flat surface. Both methods can be applied very conveniently and can effectively reduce the nonlinearity error. In this paper, the propagation of the (residual) nonlinearity error in step height calibrations is examined. Finally, the performance of the improved tool is verified in the calibration of a highly demanding industrial sample. For the measurements performed at 25 different positions and repeated six times, the standard deviation of the total 150 measured values is 0.08 nm, which includes the contributions from the reproducibility of the metrology tool and sample inhomogeneity. This research has significantly improved our dimensional nanometrology service. For instance, the extended measurement uncertainty (k = 2) is reduced from 1.0 to 0.3 nm for the step height or etching depth calibrations.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Charrier, Anne M., Aubin C. Normand, Ali Passian, Philip Schaefer et Aude L. Lereu. « In situ plant materials hyperspectral imaging by multimodal scattering near-field optical microscopy ». Communications Materials 2, no 1 (9 juin 2021). http://dx.doi.org/10.1038/s43246-021-00166-7.

Texte intégral
Résumé :
AbstractPlant cells are elaborate three-dimensional polymer nano-constructs with complex chemistry. The bulk response of plants to light, in the far-field, is ultimately encoded by optical scattering from these nano-constructs. Their chemical and physical properties may be acquired through their interaction with a modulated nano-tip using scattering scanning near-field optical microscopy. Here, using this technique, we present 20 nm spatial resolution mechanical, spectral and optical mappings of plant cell walls. We first address the problem of plant polymers tracking through pretreatment and processing. Specifically, cellulose and lignin footprints are traced within a set of delignified specimen, establishing the factors hindering complete removal of lignin, an important industrial polymer. Furthermore, we determine the frequency dependent dielectric function $${\epsilon }(\omega)={(n+ik)}^{2}$$ ϵ ( ω ) = ( n + i k ) 2 of plant material in the range 28 ≤ ω ≤ 58 THz, and show how the environmental chemical variation is imprinted in the nanoscale variability of n and k. This nanometrology is a promise for further progress in the development of plant-based (meta-)materials.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie