Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Differential equations.

Articles de revues sur le sujet « Differential equations »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Differential equations ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Tabor, Jacek. « Differential equations in metric spaces ». Mathematica Bohemica 127, no 2 (2002) : 353–60. http://dx.doi.org/10.21136/mb.2002.134163.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Andres, Jan, et Pavel Ludvík. « Topological entropy and differential equations ». Archivum Mathematicum, no 1 (2023) : 3–10. http://dx.doi.org/10.5817/am2023-1-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Laksmikantham, V. « Set differential equations versus fuzzy differential equations ». Applied Mathematics and Computation 164, no 2 (mai 2005) : 277–94. http://dx.doi.org/10.1016/j.amc.2004.06.068.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Khakale, Savita Santu, Kailas Sahadu Ahire et Dinkar Pitambar Patil. « Soham Transform in Fractional Differential Equations ». Indian Journal Of Science And Technology 17, no 33 (24 août 2024) : 3481–87. http://dx.doi.org/10.17485/ijst/v17i33.1383.

Texte intégral
Résumé :
Objectives: Soham transforms is one of the appropriate tools for solving fractional differential equations that are flexible enough to adapt to different purposes. Methods: Integral transform methods help to simplify fractional differential equations into algebraic equations. Enable the use of classical methods to solve fractional differential equations. Findings: In this paper, the Soham transform can solve linear homogeneous and non-homogeneous Fractional Differential Equations with constant coefficients. Finally, we use this integral transform to obtain the analytical solution of non-homogeneous fractional differential equations. Novelty: The Soham transform method is a suitable and very effective tool for obtaining analytical solutions of fractional differential equations with constant coefficients. Soham Transform is more multipurpose as the Laplace transform is limited to fractional differential equations. Soham Transform is in the development stage. Keywords: Soham Transform, Fractional Differential Equations, Integral transforms, Reimann­ Liouville Fractional Integral, Caputo Fractional Derivative
Styles APA, Harvard, Vancouver, ISO, etc.
5

Parasidis, I. N. « EXTENSION AND DECOMPOSITION METHOD FOR DIFFERENTIAL AND INTEGRO-DIFFERENTIAL EQUATIONS ». Eurasian Mathematical Journal 10, no 3 (2019) : 48–67. http://dx.doi.org/10.32523/2077-9879-2019-10-3-48-67.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Saltas, Vassilios, Vassilios Tsiantos et Dimitrios Varveris. « Solving Differential Equations and Systems of Differential Equations with Inverse Laplace Transform ». European Journal of Mathematics and Statistics 4, no 3 (14 juin 2023) : 1–8. http://dx.doi.org/10.24018/ejmath.2023.4.3.192.

Texte intégral
Résumé :
The inverse Laplace transform enables the solution of ordinary linear differential equations as well as systems of ordinary linear differentials with applications in the physical and engineering sciences. The Laplace transform is essentially an integral transform which is introduced with the help of a suitable generalized integral. The ultimate goal of this work is to introduce the reader to some of the basic ideas and applications for solving initially ordinary differential equations and then systems of ordinary linear differential equations.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Chrastinová, Veronika, et Václav Tryhuk. « Parallelisms between differential and difference equations ». Mathematica Bohemica 137, no 2 (2012) : 175–85. http://dx.doi.org/10.21136/mb.2012.142863.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Tumajer, František. « Controllable systems of partial differential equations ». Applications of Mathematics 31, no 1 (1986) : 41–53. http://dx.doi.org/10.21136/am.1986.104183.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kurzweil, Jaroslav, et Alena Vencovská. « Linear differential equations with quasiperiodic coefficients ». Czechoslovak Mathematical Journal 37, no 3 (1987) : 424–70. http://dx.doi.org/10.21136/cmj.1987.102170.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Sergey, Piskarev, et Siegmund Stefan. « UNSTABLE MANIFOLDS FOR FRACTIONAL DIFFERENTIAL EQUATIONS ». Eurasian Journal of Mathematical and Computer Applications 10, no 3 (27 septembre 2022) : 58–72. http://dx.doi.org/10.32523/2306-6172-2022-10-3-58-72.

Texte intégral
Résumé :
We prove the existence of unstable manifolds for an abstract semilinear fractional differential equation Dαu(t) = Au(t) + f(u(t)), u(0) = u 0 , on a Banach space. We then develop a general approach to establish a semidiscrete approximation of unstable manifolds. The main assumption of our results are naturally satisfied. In particular, this is true for operators with compact resolvents and can be verified for finite elements as well as finite differences methods.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Džurina, Jozef. « Comparison theorems for functional differential equations ». Mathematica Bohemica 119, no 2 (1994) : 203–11. http://dx.doi.org/10.21136/mb.1994.126077.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Loud, Warren S., A. N. Tikhonov, A. B. Vasil'eva et A. G. Sveshnikov. « Differential Equations. » American Mathematical Monthly 94, no 3 (mars 1987) : 308. http://dx.doi.org/10.2307/2323408.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Croft, Tony, D. A. Sanchez, R. C. Allen Jr. et W. T. Kyner. « Differential Equations ». Mathematical Gazette 73, no 465 (octobre 1989) : 249. http://dx.doi.org/10.2307/3618470.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Brindley, Graham, D. Lomen et J. Mark. « Differential Equations ». Mathematical Gazette 73, no 466 (décembre 1989) : 353. http://dx.doi.org/10.2307/3619335.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Abbott, Steve, et SMP. « Differential Equations ». Mathematical Gazette 79, no 484 (mars 1995) : 186. http://dx.doi.org/10.2307/3620064.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Berkshire, Frank, A. N. Tikhonov, A. B. Vasil'eva et A. G. Sveshnikov. « Differential Equations ». Mathematical Gazette 70, no 452 (juin 1986) : 168. http://dx.doi.org/10.2307/3615804.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Lee, Tzong-Yow. « Differential Equations ». Annals of Probability 29, no 3 (juillet 2001) : 1047–60. http://dx.doi.org/10.1214/aop/1015345595.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Barrett, K. E. « Differential equations ». Applied Mathematical Modelling 11, no 3 (juin 1987) : 233–34. http://dx.doi.org/10.1016/0307-904x(87)90010-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

He, Ji-Huan, et Zheng-Biao Li. « Converting fractional differential equations into partial differential equations ». Thermal Science 16, no 2 (2012) : 331–34. http://dx.doi.org/10.2298/tsci110503068h.

Texte intégral
Résumé :
A transform is suggested in this paper to convert fractional differential equations with the modified Riemann-Liouville derivative into partial differential equations, and it is concluded that the fractional order in fractional differential equations is equivalent to the fractal dimension.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Knorrenschild, Michael. « Differential/Algebraic Equations As Stiff Ordinary Differential Equations ». SIAM Journal on Numerical Analysis 29, no 6 (décembre 1992) : 1694–715. http://dx.doi.org/10.1137/0729096.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

N O, Onuoha. « Transformation of Parabolic Partial Differential Equations into Heat Equation Using Hopf Cole Transform ». International Journal of Science and Research (IJSR) 12, no 6 (5 juin 2023) : 1741–43. http://dx.doi.org/10.21275/sr23612082710.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

MANOFF, S. « GEODESIC AND AUTOPARALLEL EQUATIONS OVER DIFFERENTIABLE MANIFOLDS ». International Journal of Modern Physics A 11, no 21 (20 août 1996) : 3849–74. http://dx.doi.org/10.1142/s0217751x96001814.

Texte intégral
Résumé :
The notions of ordinary, covariant and Lie differentials are considered as operators over differentiable manifolds with different (not only by sign) contravariant and covariant affine connections and metric. The difference between the interpretations of the ordinary differential as a covariant basic vector field and as a component of a contravariant vector field is discussed. By means of the covariant metric and the ordinary differential the notion of the line element is introduced and the geodesic equation is obtained and compared with the autoparallel equation.
Styles APA, Harvard, Vancouver, ISO, etc.
23

L Suresh, P., et Ch Satyanarayana. « Numerical Study of Higher Order Differential Equations Using Differential Transform Method ». International Journal of Science and Research (IJSR) 11, no 9 (5 septembre 2022) : 1105–7. http://dx.doi.org/10.21275/sr22915122737.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Lazopoulos, Konstantinos A. « On Λ-Fractional Differential Equations ». Foundations 2, no 3 (5 septembre 2022) : 726–45. http://dx.doi.org/10.3390/foundations2030050.

Texte intégral
Résumé :
Λ-fractional differential equations are discussed since they exhibit non-locality and accuracy. Fractional derivatives form fractional differential equations, considered as describing better various physical phenomena. Nevertheless, fractional derivatives fail to satisfy the prerequisites of differential topology for generating differentials. Hence, all the sources of generating fractional differential equations, such as fractional differential geometry, the fractional calculus of variations, and the fractional field theory, are not mathematically accurate. Nevertheless, the Λ-fractional derivative conforms to all prerequisites demanded by differential topology. Hence, the various mathematical forms, including those derivatives, do not lack the mathematical accuracy or defects of the well-known fractional derivatives. A summary of the Λ-fractional analysis is presented with its influence on the sources of differential equations, such as fractional differential geometry, field theorems, and calculus of variations. Λ-fractional ordinary and partial differential equations will be discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Elishakoff, Isaac. « Differential Equations of Love and Love of Differential Equations ». Journal of Humanistic Mathematics 9, no 2 (juillet 2019) : 226–46. http://dx.doi.org/10.5642/jhummath.201902.15.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Barles, Guy, Rainer Buckdahn et Etienne Pardoux. « Backward stochastic differential equations and integral-partial differential equations ». Stochastics and Stochastic Reports 60, no 1-2 (février 1997) : 57–83. http://dx.doi.org/10.1080/17442509708834099.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Marjona, Kosimova. « APPLICATION OF DIFFERENTIAL EQUATIONS IN VARIOUS FIELDS OF SCIENCE ». American Journal of Applied Science and Technology 4, no 6 (1 juin 2024) : 76–81. http://dx.doi.org/10.37547/ajast/volume04issue06-15.

Texte intégral
Résumé :
The article, "Application of Differential Equations in Various Fields of Science," explores the use of differential equations for modeling economic and natural phenomena. It examines two main models of economic dynamics: the Evans model for the market of a single product, and the Solow model for economic growth.The author emphasizes the importance of proving the existence of solutions to differential equations in order to verify the accuracy of mathematical models. They also discuss the role of electronic computers in developing the theory of differential equations and its connection with other branches of mathematics such as functional analysis, algebra, and probability theory.Furthermore, the article highlights the significance of various solution methods for differential equations, including the Fourier method, Ritz method, Galerkin method, and perturbation theory.Special attention is paid to the theory of partial differential equations, the theory of differential operators, and problems arising in physics, mechanics, and technology. Differential equations are the theoretical foundation of almost all scientific and technological models and a key tool for understanding various processes in science, such as in physics, chemistry, and biology.Examples of processes described by differential equations include normalreproduction, explosive growth, and the logistic curve. Cases of using differential equations to model deterministic, finite-dimensional, and differentiable phenomena, as well as the impact of catch quotas on population dynamics, are discussed.In conclusion, the significance of differential equations for research and their role in stimulating the development of new mathematical areas is emphasized.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Frittelli, Simonetta, Carlos Kozameh et Ezra T. Newman. « Differential Geometry from Differential Equations ». Communications in Mathematical Physics 223, no 2 (1 octobre 2001) : 383–408. http://dx.doi.org/10.1007/s002200100548.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Hino, Yoshiyuki, et Taro Yoshizawa. « Total stability property in limiting equations for a functional-differential equation with infinite delay ». Časopis pro pěstování matematiky 111, no 1 (1986) : 62–69. http://dx.doi.org/10.21136/cpm.1986.118265.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Chrastina, Jan. « On formal theory of differential equations. I. » Časopis pro pěstování matematiky 111, no 4 (1986) : 353–83. http://dx.doi.org/10.21136/cpm.1986.118285.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Chrastina, Jan. « On formal theory of differential equations. II. » Časopis pro pěstování matematiky 114, no 1 (1989) : 60–105. http://dx.doi.org/10.21136/cpm.1989.118369.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Li, Tongxing, Yuriy V. Rogovchenko et Chenghui Zhang. « Oscillation of fourth-order quasilinear differential equations ». Mathematica Bohemica 140, no 4 (2015) : 405–18. http://dx.doi.org/10.21136/mb.2015.144459.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Kwapisz, Marian. « On solving systems of differential algebraic equations ». Applications of Mathematics 37, no 4 (1992) : 257–64. http://dx.doi.org/10.21136/am.1992.104508.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Franců, Jan. « Weakly continuous operators. Applications to differential equations ». Applications of Mathematics 39, no 1 (1994) : 45–56. http://dx.doi.org/10.21136/am.1994.134242.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Grace, S. R., et Bikkar S. Lalli. « Oscillation theorems for certain neutral differential equations ». Czechoslovak Mathematical Journal 38, no 4 (1988) : 745–53. http://dx.doi.org/10.21136/cmj.1988.102270.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Ohriska, Ján. « Oscillation of differential equations and $v$-derivatives ». Czechoslovak Mathematical Journal 39, no 1 (1989) : 24–44. http://dx.doi.org/10.21136/cmj.1989.102276.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Gopalsamy, K., B. S. Lalli et B. G. Zhang. « Oscillation of odd order neutral differential equations ». Czechoslovak Mathematical Journal 42, no 2 (1992) : 313–23. http://dx.doi.org/10.21136/cmj.1992.128330.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Džurina, Jozef. « Comparison theorem for third-order differential equations ». Czechoslovak Mathematical Journal 44, no 2 (1994) : 357–66. http://dx.doi.org/10.21136/cmj.1994.128464.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Grace, S. R., et B. S. Lalli. « Oscillation criteria for forced neutral differential equations ». Czechoslovak Mathematical Journal 44, no 4 (1994) : 713–24. http://dx.doi.org/10.21136/cmj.1994.128489.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Fraňková, Dana. « Substitution method for generalized linear differential equations ». Mathematica Bohemica 116, no 4 (1991) : 337–59. http://dx.doi.org/10.21136/mb.1991.126028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Chrastina, Jan. « On formal theory of differential equations. III. » Mathematica Bohemica 116, no 1 (1991) : 60–90. http://dx.doi.org/10.21136/mb.1991.126196.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Tiwari, Chinta Mani, et Richa Yadav. « Distributional Solutions to Nonlinear Partial Differential Equations ». International Journal of Research Publication and Reviews 5, no 4 (11 avril 2024) : 6441–47. http://dx.doi.org/10.55248/gengpi.5.0424.1085.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Freeman, J. S., et S. A. Velinsky. « Comparison of the Dynamics of Conventional and Worm-Gear Differentials ». Journal of Mechanisms, Transmissions, and Automation in Design 111, no 4 (1 décembre 1989) : 605–10. http://dx.doi.org/10.1115/1.3259043.

Texte intégral
Résumé :
The differential mechanism has been used for many years and a variety of unique designs have been developed for particular applications. This paper investigates the performance of both the conventional bevel-gear differential and the worm-gear differential as used in vehicles. The worm-gear differential is a design in which the bevel gears of the conventional differential are replaced by worm gear/worm wheel pairs. The resultant differential exhibits some interesting behavior which has made this differential desirable for use in high performance and off-road vehicles. In this work, an Euler-Lagrange formulation of the equations of motion of the conventional and worm-gear differentials allows comparison of their respective behavior. Additionally, each differential is incorporated into a full vehicle model to observe their effects on gross vehicle response. The worm-gear differential is shown to exhibit the desirable characteristics of a limited-slip differential while maintaining the conventional differential’s ability to differentiate output shaft speeds at all power levels.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Balamuralitharan, S., et . « MATLAB Programming of Nonlinear Equations of Ordinary Differential Equations and Partial Differential Equations ». International Journal of Engineering & ; Technology 7, no 4.10 (2 octobre 2018) : 773. http://dx.doi.org/10.14419/ijet.v7i4.10.26114.

Texte intégral
Résumé :
My idea of this paper is to discuss the MATLAB program for various mathematical modeling in ordinary differential equations (ODEs) and partial differential equations (PDEs). Idea of this paper is very useful to research scholars, faculty members and all other fields like engineering and biology. Also we get easily to find the numerical solutions from this program.
Styles APA, Harvard, Vancouver, ISO, etc.
45

Harir, Atimad, Said Melliani et Lalla Saadia Chadli. « Fuzzy Conformable Fractional Differential Equations ». International Journal of Differential Equations 2021 (4 février 2021) : 1–6. http://dx.doi.org/10.1155/2021/6655450.

Texte intégral
Résumé :
In this study, fuzzy conformable fractional differential equations are investigated. We study conformable fractional differentiability, and we define fractional integrability properties of such functions and give an existence and uniqueness theorem for a solution to a fuzzy fractional differential equation by using the concept of conformable differentiability. This concept is based on the enlargement of the class of differentiable fuzzy mappings; for this, we consider the lateral Hukuhara derivatives of order q ∈ 0,1 .
Styles APA, Harvard, Vancouver, ISO, etc.
46

Devaney, Robert L., Beverly West, Steven Strogatz, Jean Marie McDill et John Cantwell. « Interactive Differential Equations. » American Mathematical Monthly 105, no 7 (août 1998) : 687. http://dx.doi.org/10.2307/2589275.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Brauer, Fred, Vladimir I. Arnol'd et Roger Cook. « Ordinary Differential Equations. » American Mathematical Monthly 100, no 8 (octobre 1993) : 810. http://dx.doi.org/10.2307/2324802.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Hibberd, S., Richard Bellman et George Adomian. « Partial Differential Equations ». Mathematical Gazette 71, no 458 (décembre 1987) : 341. http://dx.doi.org/10.2307/3617100.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Abbott, Steve, et Lawrence C. Evans. « Partial Differential Equations ». Mathematical Gazette 83, no 496 (mars 1999) : 185. http://dx.doi.org/10.2307/3618751.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Abram, J., W. E. Boyce et R. C. DiPrima. « Elementary Differential Equations ». Mathematical Gazette 78, no 481 (mars 1994) : 83. http://dx.doi.org/10.2307/3619457.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie