Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Diaminopurine.

Articles de revues sur le sujet « Diaminopurine »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Diaminopurine ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Weckbecker, Gisbert, et Joseph G. Cory. « Metabolic activation of 2,6-diaminopurine and 2,6-diaminopurine-2′-deoxyriboside to antitumor agents ». Advances in Enzyme Regulation 28 (janvier 1989) : 125–44. http://dx.doi.org/10.1016/0065-2571(89)90068-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Cristofalo, Matteo, Daniel Kovari, Roberta Corti, Domenico Salerno, Valeria Cassina, David Dunlap et Francesco Mantegazza. « Nanomechanics of Diaminopurine-Substituted DNA ». Biophysical Journal 116, no 5 (mars 2019) : 760–71. http://dx.doi.org/10.1016/j.bpj.2019.01.027.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Robins, Morris J., Ruiming Zou, Fritz Hansske et Stanislaw F. Wnuk. « Synthesis of sugar-modified 2,6-diaminopurine and guanine nucleosides from guanosine via transformations of 2-aminoadenosine and enzymatic deamination with adenosine deaminase ». Canadian Journal of Chemistry 75, no 6 (1 juin 1997) : 762–67. http://dx.doi.org/10.1139/v97-092.

Texte intégral
Résumé :
Treatment of 2,6-diaminopurine riboside (2-aminoadenosine) with α-acetoxyisobutyryl bromide in acetonitrile gave mixtures of the trans 2′,3′-bromohydrin acetates 2. Treatment of 2 with zinc–copper couple effected reductive elimination, and deprotection gave 2,6-diamino-9-(2,3-dideoxy-β-D-erythro-pent-2-enofuranosyl)purine (3a). Treatment of 2 with Dowex 1 × 2 (OH−) resin in methanol gave the 2′,3′-anhydro derivative 4. Stannyl radical-mediated hydrogenolysis of 2 and deprotection gave the 2′-deoxy 6a and 3′-deoxy 7a nucleosides. Treatment of the 3′,5′-O-(tetraisopropyldisiloxanyl) derivative (5a) with trifluoromethanesulfonyl chloride – 4-(dimethylamino)pyridine gave 2′-triflate 5c. Displacement with lithium azide–dimethylformamide and deprotection gave the arabino 2′-azido derivative 8a, which was reduced to give 2,6-diamino-9-(2-amino-2-deoxy-β-D-arabinofuranosyl)purine (8b). Sugar-modified 2,6-diaminopurine nucleosides were treated with adenosine deaminase to give the corresponding guanine analogues. Keywords: adenosine deaminase, 2,6-diaminopurine nucleosides, deoxygenation, guanine nucleosides, nucleosides.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Krečmerová, Marcela, Milena Masojídková et Antonín Holý. « Synthesis of N9- and N7-[2-Hydroxy-3-(phosphonomethoxy)propyl] Derivatives of N6-Substituted Adenines, 2,6-Diaminopurines and Related Compounds ». Collection of Czechoslovak Chemical Communications 69, no 10 (2004) : 1889–913. http://dx.doi.org/10.1135/cccc20041889.

Texte intégral
Résumé :
Base-catalyzed reactions of diethyl [(oxiranylmethoxy)methyl]phosphonate (2) with purine bases (adenine, 2,6-diaminopurine, 6-chloropurine and 2-amino-6-chloropurine) gave corresponding 9- or 7-[2-hydroxy-3-(phosphonomethoxy)propyl] purines. The adenine and 2,6-diaminopurine derivatives cyclize to cyclic phosphonates 4 and 6. The 9-[2-hydroxy-3-(phosphonomethoxy)propyl] derivatives of N6-substituted adenine and 2,6-diaminopurine (15-27) were prepared by the treatment of diethyl {[3-(6-chloropurin-9-yl)-2-hydroxypropoxy]methyl}phosphonate (11) or diethyl {[3-(2-amino-6-chloropurin-9-yl)-2-hydroxypropoxy]methyl}phosphonate (13) with primary or secondary amines. The reaction of 6-chloro- or 2-amino-6-chloropurine derivatives (11, 13) with thiourea gave the corresponding diethyl purine-6-thiol or 2-aminopurine-6-thiol phosphonates 47, 48. The guanine derivative 49 was prepared by the treatment of compound 13 with 80% acetic acid. All diethyl phosphonates were transformed to free phosphonic acids (31-43, 50-52) by the action of bromotrimethylsilane and subsequent hydrolysis.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Canol, Angeles, Myron F. Goodman et Ramon Eritja. « Synthesis of Oligodeoxyribonucleotides Containing 2,6-Diaminopurine ». Nucleosides and Nucleotides 13, no 1-3 (mars 1994) : 501–9. http://dx.doi.org/10.1080/15257779408013258.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Médici, R., E. S. Lewkowicz et A. M. Iribarren. « Microbial synthesis of 2,6-diaminopurine nucleosides ». Journal of Molecular Catalysis B : Enzymatic 39, no 1-4 (mai 2006) : 40–44. http://dx.doi.org/10.1016/j.molcatb.2006.01.024.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Luyten, I., A. Van Aerschot, J. Rozenski, R. Busson et P. Herdewijn. « Protection of 2,6-Diaminopurine 2′-Deoxyriboside ». Nucleosides and Nucleotides 16, no 7-9 (juillet 1997) : 1649–52. http://dx.doi.org/10.1080/07328319708006247.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Rosenbohm, Christoph, Daniel Sejer Pedersen, Miriam Frieden, Flemming R. Jensen, Susan Arent, Sine Larsen et Troels Koch. « LNA guanine and 2,6-diaminopurine. Synthesis, characterization and hybridization properties of LNA 2,6-diaminopurine containing oligonucleotides ». Bioorganic & ; Medicinal Chemistry 12, no 9 (mai 2004) : 2385–96. http://dx.doi.org/10.1016/j.bmc.2004.02.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Caldero-Rodríguez, Naishka E., Luis A. Ortiz-Rodríguez, Andres A. Gonzalez et Carlos E. Crespo-Hernández. « Photostability of 2,6-diaminopurine and its 2′-deoxyriboside investigated by femtosecond transient absorption spectroscopy ». Physical Chemistry Chemical Physics 24, no 7 (2022) : 4204–11. http://dx.doi.org/10.1039/d1cp05269a.

Texte intégral
Résumé :
The electronic relaxation pathways of 2,6-diaminopurine and its deoxyribonucleoside were elucidated in aqueous solution. It is shown that these purine derivatives are largely photostable to ultraviolet radiation.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Salerno, Domenico, Claudia Adriana Marrano, Valeria Cassina, Matteo Cristofalo, Qing Shao, Laura Finzi, Francesco Mantegazza et David Dunlap. « Nanomechanics of negatively supercoiled diaminopurine-substituted DNA ». Nucleic Acids Research 49, no 20 (29 octobre 2021) : 11778–86. http://dx.doi.org/10.1093/nar/gkab982.

Texte intégral
Résumé :
Abstract Single molecule experiments have demonstrated a progressive transition from a B- to an L-form helix as DNA is gently stretched and progressively unwound. The particular sequence of a DNA segment defines both base stacking and hydrogen bonding that affect the partitioning and conformations of the two phases. Naturally or artificially modified bases alter H-bonds and base stacking and DNA with diaminopurine (DAP) replacing adenine was synthesized to produce linear fragments with triply hydrogen-bonded DAP:T base pairs. Both unmodified and DAP-substituted DNA transitioned from a B- to an L-helix under physiological conditions of mild tension and unwinding. This transition avoids writhing and the ease of this transition may prevent cumbersome topological rearrangements in genomic DNA that would require topoisomerase activity to resolve. L-DNA displayed about tenfold lower persistence length than B-DNA. However, left-handed DAP-substituted DNA was twice as stiff as unmodified L-DNA. Unmodified DNA and DAP-substituted DNA have very distinct mechanical characteristics at physiological levels of negative supercoiling and tension.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Salerno, Domenico, Francesco Mantegazza, Valeria Cassina, Claudia A. Marrano, Matteo Cristofalo, Qing Shao, Laura Finzi et David Dunlap. « Nanomechanics of negatively supercoiled diaminopurine-substituted DNA ». Biophysical Journal 121, no 3 (février 2022) : 64a—65a. http://dx.doi.org/10.1016/j.bpj.2021.11.2389.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

VOSS, UTA B., ANDRE CHOLLET et ALAN D. B. MALCOLM. « Use of 2,6-diaminopurine in oligonucleotide gene probes ». Biochemical Society Transactions 17, no 5 (1 octobre 1989) : 913. http://dx.doi.org/10.1042/bst0170913.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Cheong, Chaejoon, Ignacio Tinoco et André Chollet. « Thermodynamic studies of base pairing involving 2,6-diaminopurine ». Nucleic Acids Research 16, no 11 (1988) : 5115–22. http://dx.doi.org/10.1093/nar/16.11.5115.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

De Benedetti, Eliana C., Cintia W. Rivero, Claudia N. Britos, Mario E. Lozano et Jorge A. Trelles. « Biotransformation of 2,6-diaminopurine nucleosides by immobilizedGeobacillus stearothermophilus ». Biotechnology Progress 28, no 5 (28 août 2012) : 1251–56. http://dx.doi.org/10.1002/btpr.1602.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

CANO, A., M. F. GOODMAN et R. ERITJA. « ChemInform Abstract : Synthesis of Oligodeoxyribonucleotides Containing 2,6-Diaminopurine. » ChemInform 26, no 2 (18 août 2010) : no. http://dx.doi.org/10.1002/chin.199502191.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

LUYTEN, I., A. VAN AERSCHOT, J. ROZENSKI, R. BUSSON et P. HERDEWIJN. « ChemInform Abstract : Protection of 2,6-Diaminopurine 2′-Deoxyriboside. » ChemInform 29, no 9 (23 juin 2010) : no. http://dx.doi.org/10.1002/chin.199809226.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Gu, Ping, Jordi Morral, Jing Wang, Jef Rozenski, Roger Busson, Arthur Van Aerschot, Erik De Clercq et Piet Herdewijn. « Synthesis and Antiviral Activity of a Series of New Cyclohexenyl Nucleosides ». Antiviral Chemistry and Chemotherapy 14, no 1 (février 2003) : 31–37. http://dx.doi.org/10.1177/095632020301400103.

Texte intégral
Résumé :
A series of new cyclohexenyl nucleosides is synthesized by coupling the heterocyclic bases with a protected cyclohexenyl precursor under Mitsunobu conditions. The compounds were evaluated for their antiviral and cytostatic activity. Pronounced activity against herpes simplex virus type 1 and type 2 was observed for the 2,6-diaminopurine analogue.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Pasternak, Anna, Elzbieta Kierzek, Karol Pasternak, Douglas H. Turner et Ryszard Kierzek. « A chemical synthesis of LNA-2,6-diaminopurine riboside, and the influence of 2′-O-methyl-2,6-diaminopurine and LNA-2,6-diaminopurine ribosides on the thermodynamic properties of 2′-O-methyl RNA/RNA heteroduplexes ». Nucleic Acids Research 35, no 12 (juin 2007) : 4055–63. http://dx.doi.org/10.1093/nar/gkm421.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Yokota, T., K. Konno, S. Shigeta, A. Holy, J. Balzarini et E. De Clercq. « Inhibitory Effects of Acyclic Nucleoside Phosphonate Analogues on Hepatitis B Virus DNA Synthesis in HB611 Cells ». Antiviral Chemistry and Chemotherapy 5, no 2 (avril 1994) : 57–63. http://dx.doi.org/10.1177/095632029400500201.

Texte intégral
Résumé :
By using an assay system based on a human hepatoblastoma cell line (HB611) that continuously synthesizes hepatitis B virus (HBV) DNA, 56 acyclic nucleoside phosphonate analogues were examined for their inhibitory effects on HBV DNA synthesis. The following compounds were found to inhibit HBV DNA synthesis at concentrations that were significantly lower than their minimum cytotoxic concentrations; 9-(2-phosphonylmethoxyethyl)adenine (PMEA), 9-(2-phosphonylmethoxyethyl) guanine(PMEG), 9-(2-phosphonylmethoxyethyl) guanine ethyl ester (PMEGEE), 9 - (2 - phosphonylmethoxyethyl) - 1 - deazaadenine (PMEC1A), 9-(2-phosphonylmethoxyethyl)-2,6-diaminopurine (PMEDAP), ( S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine (HPMPA), 9-(3-isopropoxy-2-phosphonylmethoxypropyl)adenine (IPPMPA), 9-( RS)-(2-phosphonylmethoxypropyl)adenine (PMPA) and 9-(3-hydroxy-2-phosphonylmethoxypropyl)-2, 6-diaminopurine (HPMPDAP). The most selective compounds (with indexes greater than 100) were PMEDAP, PMEA, IPPMPA, and PMPA. Acyclic pyrimidine nucleoside phosphonate analogues did not prove markedly selective as anti-HBV agents. Diphosphoryl derivatives of some acyclic purine nucleoside phos-phonates (i.e. PMEA, PMEDAP, HPMPA) were prepared. They proved inhibitory to HBV DNA polymerase but not cellular DNA polymerase α.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Holý, Antonín, et Milena Masojídková. « Synthesis of Enantiomeric N-(2-Phosphonomethoxypropyl) Derivatives of Purine and Pyrimidine Bases. I. The Stepwise Approach ». Collection of Czechoslovak Chemical Communications 60, no 7 (1995) : 1196–212. http://dx.doi.org/10.1135/cccc19951196.

Texte intégral
Résumé :
The (R)- and (S)-N-(2-phosphonomethoxypropyl) derivatives of purine and pyrimidine bases (PMP derivatives) exhibit very high activity against retroviruses. This paper describes the synthesis of enantiomeric 9-(2-phosphonomethoxypropyl)adenines (I and XXVII), 9-(2-phosphonomethoxypropyl)-2,6-diaminopurines (II and XXXI), 9-(2-phosphonomethoxypropyl)guanines (III and XXIX) and 1-(R)-(2-phosphonomethoxypropyl)cytosine (XIX) by alkylation of N-protected N-(2-hydroxypropyl) derivatives of the corresponding bases with bis(2-propyl) p-toluenesulfonyloxymethylphosphonate (X), followed by stepwise N- and O-deprotection of the intermediates. The key intermediates, N-(2-hydroxypropyl) derivatives IX and XXV, were obtained by alkylation of the appropriate heterocyclic base with (R)- or (S)-2-(2-tetrahydropyranyloxy)propyl p-toluenesulfonate (VII or XXIII) and acid hydrolysis of the resulting N-[2-(2-tetrahydropyranyloxy)propyl] derivatives VIII and XXII. The chiral synthons were prepared by tosylation of (R)- or (S)-2-(2-tetrahydropyranyloxy)propanol (VI or XXI) available by reduction of enantiomeric alkyl 2-O-tetrahydropyranyllactates V and XXI with sodium bis(2-methoxyethoxy)aluminum hydride. This approach was used for the synthesis of cytosine, adenine and 2,6-diaminopurine derivatives, while compounds derived from guanine were prepared by hydrolysis of 2-amino-6-chloropurine intermediates. Cytosine derivative IXe was also synthesized by alkylation of 4-methoxy-2-pyrimidone followed by ammonolysis of the intermediate IXf.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Holý, Antonín, Ivan Votruba, Eva Tloušťová et Milena Masojídková. « Synthesis and Cytostatic Activity of N-[2-(Phosphonomethoxy)alkyl] Derivatives of N6-Substituted Adenines, 2,6-Diaminopurines and Related Compounds ». Collection of Czechoslovak Chemical Communications 66, no 10 (2001) : 1545–92. http://dx.doi.org/10.1135/cccc20011545.

Texte intégral
Résumé :
N6-Substituted adenine and 2,6-diaminopurine derivatives of 9-[2-(phosphonomethoxy)- ethyl] (PME), 9-[(R)-2-(phosphonomethoxy)propyl] [(R)-PMP] and enantiomeric (S)-PMP series were synthesized by reactions of primary or secondary amines with 6-chloro-9-{[2-(diisopropoxyphosphoryl)methoxy]alkyl}purines (26-28) or 2-amino-6-chloro-9-{[2-(diisopropoxy- phosphoryl)methoxy]alkyl}purines (29-31) followed by treatment of the diester intermediates32with bromo(trimethyl)silane and hydrolysis. Diesters32were also obtained by reaction ofN6-substituted purines with synthons23-25bearing diisopropoxyphosphoryl group. Alkylation of 2-amino-6-chloropurine (9) with diethyl [2-(2-chloroethoxy)ethyl]phosphonate (148) gave the diester149which was analogously converted toN6-substituted 2,6-diamino- 9-[2-(2-phosphonoethoxy)ethyl]purines151-153. Alkylation ofN6-substituted 2,6-diaminopurines with (R)-[(trityloxy)methyl]oxirane (155) followed by reaction of thus-obtained intermediates156with dimethylformamide dimethylacetal and condensation with diisopropyl [(tosyloxy)methyl]phosphonate (158) followed by deprotection of the intermediates159gaveN6-substituted 2,6-diamino-9-[(S)-3-hydroxy-2-(phosphonomethoxy)propyl]purines160-163. The highest cytostatic activityin vitrowas exhibited by the followingN6-derivatives of 2,6-diamino-9-[2-(phosphonomethoxy)ethyl]purine (PMEDAP): 2,2,2-trifluoroethyl (53), allyl (54), [(2-dimethylamino)ethyl] (68), cyclopropyl (75) and dimethyl (91). In CCRF-CEM cells, the cyclopropyl derivative75is deaminated to the guanine derivative PMEG (3) which is then converted to its diphosphate.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Ross, Bruce, Robert Springer et Vasulinga Ravikumar. « An Efficient and Scalable Synthesis of 2,6-Diaminopurine Riboside ». Nucleosides, Nucleotides and Nucleic Acids 27, no 1 (janvier 2008) : 67–69. http://dx.doi.org/10.1080/15257770701571990.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Mohapatra, Balaram, Pratibha, R. Kamal Saravanan et Sandeep Verma. « 2,6-Diaminopurine-zinc complex for primordial carbon dioxide fixation ». Inorganica Chimica Acta 484 (janvier 2019) : 167–73. http://dx.doi.org/10.1016/j.ica.2018.09.041.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Shao, Qing, Monica Fernandez, Sharon Owino, Yoojin Lee, Laura Finzi et David Dunlap. « Diaminopurine-Substitution Modify DNA Elasticity and Favors L-Helices ». Biophysical Journal 106, no 2 (janvier 2014) : 66a. http://dx.doi.org/10.1016/j.bpj.2013.11.443.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Lagoja, Irene M, et Piet Herdewijn. « Preparation of Guanine and Diaminopurine from Biuret. Part III ». Chemistry & ; Biodiversity 4, no 4 (avril 2007) : 818–22. http://dx.doi.org/10.1002/cbdv.200790066.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Qiu, Y.-L., RG Ptak, JM Breitenbach, J.-S. Lin, Y.-C. Cheng, ER Kern, JC Drach et J. Zemlicka. « (Z)- and (E)-2-(Hydroxymethylcyclopropylidene)-Methylpurines and Pyrimidines as Antiviral Agents ». Antiviral Chemistry and Chemotherapy 9, no 4 (août 1998) : 57–68. http://dx.doi.org/10.1177/095632029800900406.

Texte intégral
Résumé :
Several Z- and E-methylenecyclopropane nucleoside analogues were synthesized and evaluated for antiviral activity. Reaction of the Z- and E-2-amino-6-chloropurine methylenecyclopropanes with ammonia or cyclopropylamine gave 2,6-diamino or 2-amino-6-cyclopropylamino analogues. Alkylation elimination of N4-acetylcytosine with ethyl Z- and E-2-bromo-2-bromomethylcyclopropane-1-carboxylates gave a mixture of the Z-and E-methylenecyclopropane derivatives of cytosine. Reduction furnished a mixture of syncytol and the E isomer. Benzoylation led to the respective N4-benzoyl derivatives which were separated by chromatography. Debenzoylation afforded pure syncytol and the E isomer. Alkylation of 2,4-bis-O-trimethylsilylthymine with ethyl Z- and E-2-bromo-2-bromomethylcyclopropane-1-carboxylates gave the corresponding Z- and E-1-bromo-cyclopropylmethylderivatives of thymine. Base-catalysed elimination of HBr gave Z- and E-methylenecyclopropane carboxylic esters. Reduction furnished, after chromatographic separation, synthymol and the E isomer. The Z/E isomeric assignment of the obtained products followed from 1H NMR spectroscopy. The methylenecyclopropane analogues were tested for antiviral activity in vitro against human and murine cytomegalovirus (HCMV, MCMV), Epstein–Barr virus (EBV), varicella zoster virus (VZV), hepatitis B virus (HBV), herpes simplex virus types 1 and 2 (HSV-1, HSV-2), human herpesvirus 6 (HHV-6) and human immunodeficiency virus type 1 (HIV-1). The Z-2-amino-6-cyclopropylaminopurine analogue was the most effective agent against HCMV (EC50 or EC90 0.4–2 μM) followed by syncytol and the Z-2,6-diaminopurine analogues (EC50 or EC90 3.4–29 and 11–24 μM, respectively). The latter compound was also a strong inhibitor of MCMV (EC50 0.6 μM). Syncytol was the most potent against EBV (EC50 <0.41 and 2.5 μM) followed by the Z-2,6-diaminopurine (EC50 1.5 and 6.9 μM) and the Z-2-amino-6-cyclopropylaminopurine derivative (EC50 11.8 μM). Syncytol was also most effective against VZV (EC50 3.6 μM). Activity against HSV-1, HSV-2 and HHV-6 was generally lower; synthymol had an EC50 of 2 μM against HSV-1 (ELISA) and 1.3 μM against EBV in Daudi cells but was inactive in other assays. The 2-amino-6-cyclopropylamino analogue displayed EC50 values between 215 and >74 μM in HSV-1 and HSV-2 assays. 2-Amino-6-cyclopropylaminopurine and 2,6-diaminopurine derivatives were effective against HBV (EC50 2 and 10 μM, respectively), whereas none of the analogues inhibited HIV-1 at a higher virus load. Syncytol and the E isomer were equipotent against EBV in Daudi cells but the E isomer was much less effective in DNA hybridization assays. The E-2,6-diaminopurine analogue and E isomer of synthymol were devoid of antiviral activity.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Virta, Piritta, Andreas Koch, Mattias U. Roslund, Peter Mattjus, Erich Kleinpeter, Leif Kronberg, Rainer Sjöholm et Karel D. Klika. « Synthesis, characterisation and theoretical calculations of 2,6-diaminopurine etheno derivatives ». Organic & ; Biomolecular Chemistry 3, no 16 (2005) : 2924. http://dx.doi.org/10.1039/b505508c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Bailly, Christian, Dongchul Suh, Michael J. Waring et Jonathan B. Chaires. « Binding of Daunomycin to Diaminopurine- and/or Inosine-Substituted DNA†,‡ ». Biochemistry 37, no 4 (janvier 1998) : 1033–45. http://dx.doi.org/10.1021/bi9716128.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Fernández-Sierra, Mónica, Qing Shao, Chandler Fountain, Laura Finzi et David Dunlap. « E. coli Gyrase Fails to Negatively Supercoil Diaminopurine-Substituted DNA ». Journal of Molecular Biology 427, no 13 (juillet 2015) : 2305–18. http://dx.doi.org/10.1016/j.jmb.2015.04.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Golubeva, N. A., et A. V. Shipitsyn. « The synthesis of N 2,N 6-substituted diaminopurine ribosides ». Russian Journal of Bioorganic Chemistry 33, no 6 (novembre 2007) : 562–68. http://dx.doi.org/10.1134/s1068162007060052.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Fernandez-Sierra, Monica, Qing Shao, Chandler Fountain, Laura Finzi et David D. Dunlap. « E. Coli Gyrase Fails to Negatively Supercoil Diaminopurine-Substituted DNA ». Biophysical Journal 110, no 3 (février 2016) : 240a. http://dx.doi.org/10.1016/j.bpj.2015.11.1324.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Kovari, Daniel T., Matteo Cristofalo, David Dunlap et Laura Finzi. « The Overstretching Transition of Diaminopurine Substituted Triply Hydrogen-Bonded DNA ». Biophysical Journal 110, no 3 (février 2016) : 183a—184a. http://dx.doi.org/10.1016/j.bpj.2015.11.1023.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Schinazi, Raymond F., Grigorii G. Sivets, Mervi A. Detorio, Tami R. McBrayer, Tony Whitaker, Steven J. Coats et Franck Amblard. « Synthesis and antiviral evaluation of 2′,3′-dideoxy-2′,3′-difluoro-D-arabinofuranosyl 2,6-disubstituted purine nucleosides ». Heterocyclic Communications 21, no 5 (1 octobre 2015) : 315–27. http://dx.doi.org/10.1515/hc-2015-0174.

Texte intégral
Résumé :
AbstractThe synthesis of new 2,6-disubstituted purine 2′,3′-dideoxy-2′,3′-difluoro-D-arabino nucleosides is reported. Their ability to block HIV and HCV replication along with their cytotoxicity toward Huh-7 cells, human lymphocyte, CEM and Vero cells was also assessed. Among them, β-2,6-diaminopurine nucleoside 25 and guanosine derivative 27 demonstrate potent anti-HIV-1 activity (EC50 = 0.56 and 0.65 μm; EC90 = 4.2 and 3.1 μm) while displaying only moderate cytotoxicity in primary human lymphocytes.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Juricová, Kristina, Svatava Smrčková et Antonín Holý. « Synthesis of Base-Modified "Abbreviated" NAD Analogues ». Collection of Czechoslovak Chemical Communications 60, no 2 (1995) : 237–50. http://dx.doi.org/10.1135/cccc19950237.

Texte intégral
Résumé :
The "abbreviated" model of NAD, 1-[3-(adenin-9-yl)-2-hydroxypropyl]-3-carbamoylpyridinium chloride (VIIIa), and its 2,6-diaminopurine (VIIIb), 3-deazaadenine (VIIIc), guanine (VIIId) and cytosine (VIIIe) analogues were prepared by the Zincke reaction. The (R)-isomer of the adenine model VIIIa (compound IX) was prepared for chiroptical studies. As shown by NMR, UV and CD spectra, neither in dimethyl sulfoxide nor in water any intramolecular π-π interactions exist between the heteroaromatic systems.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Kawai, Kiyohiko, Haruka Kodera et Tetsuro Majima. « Long-Range Charge Transfer through DNA by Replacing Adenine with Diaminopurine ». Journal of the American Chemical Society 132, no 2 (20 janvier 2010) : 627–30. http://dx.doi.org/10.1021/ja907409z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Li, Peng, Osamah Alduhaish, Hadi D. Arman, Hailong Wang, Khalid Alfooty et Banglin Chen. « Solvent Dependent Structures of Hydrogen-Bonded Organic Frameworks of 2,6-Diaminopurine ». Crystal Growth & ; Design 14, no 7 (5 juin 2014) : 3634–38. http://dx.doi.org/10.1021/cg500602x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Brown, Tom, et Alister Craig. « The Incorporation of 2,6-Diaminopurine Into Oligodeoxyribonucleotides by the Phosphoramidite Method ». Nucleosides, Nucleotides and Nucleic Acids 8, no 5 (1989) : 1051. http://dx.doi.org/10.1080/07328318908054277.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Boudou, V., K. Rothenbacher, A. Van Aerschot et P. Herdewijn. « Oligonucleotides with 2,6-Diaminopurine Base Replacing for Adenine : Synthesis and Properties ». Nucleosides and Nucleotides 18, no 6-7 (juin 1999) : 1429–31. http://dx.doi.org/10.1080/07328319908044743.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Tremblay, Cécile L., Danielle L. Poulin, Jennifer L. Hicks, Subajini Selliah, Annie Chamberland, Françoise Giguel, Christopher S. Kollmann, Ting Chao Chou, Huajin Dong et Martin S. Hirsch. « Favorable Interactions between Enfuvirtide and 1-β-d-2,6-Diaminopurine Dioxolane In Vitro ». Antimicrobial Agents and Chemotherapy 47, no 11 (novembre 2003) : 3644–46. http://dx.doi.org/10.1128/aac.47.11.3644-3646.2003.

Texte intégral
Résumé :
ABSTRACT We evaluated the in vitro anti-human immunodeficiency virus type 1 (HIV-1) interactions between 1- β-d-2,6-diaminopurine dioxolane (DAPD) and enfuvirtide (T-20) against clinical isolates sensitive and resistant to reverse transcriptase and protease inhibitors. Interactions between T-20 and DAPD were synergistic to nearly additive, with combination index values ranging from 0.53 to 1.06 at 95% inhibitory concentrations. These studies suggest that a combination of T-20 and DAPD might be useful in the treatment of antiretroviral drug-experienced patients.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Alexander, Petr, et Antonín Holý. « General Method of Preparation of N-[(S)-(3-Hydroxy-2-phosphonomethoxypropyl)] Derivatives of Heterocyclic Bases ». Collection of Czechoslovak Chemical Communications 58, no 5 (1993) : 1151–63. http://dx.doi.org/10.1135/cccc19931151.

Texte intégral
Résumé :
Reaction of (R)-1-O-p-toluenesulfonyl-1,2,3-propanetriol (IV) with N-trimethylacetylimidazole (II) afforded (R)-1-O-p-toluenesulfonyl-3-O-trimethyacetyl-1,2,3-propanetriol (V) which was reacted with dimethoxymethane in the presence of phosphorus pentoxide to give (R)-2-O-methoxymethyl-1-O-p-toluenesulfonyl-3-O-trimethyacetyl-1,2,3-propanetriol (VI). Compound VI was treated with acetic anhydride and boron trifluoride etherate and the obtained 2-acetoxy derivative VII reacted with bromotrimethylsilane to give the intermediary bromomethyl ether VIII. Compound VIII on reaction with tris(2-propyl) phosphite afforded (R)-2-O-bis(2-propyl)phosphonomethyl-1-O-p-toluenesulfonyl-3-O-trimethyacetyl-1,2,3-propanetriol (IX). Condensation of synthon IX with sodium salts of adenine, 2,6-diaminopurine, or with cytosine, 6-azacytosine or 2-chloroadenine in the presence of cesium carbonate, afforded fully protected diesters X and XIIIb which on methanolysis and reaction with bromotrimethylsilane gave N-[(S)-(3-hydroxy-2-phosphonomethoxypropyl)] derivatives of adenine (XIa), 2- chloroadenine (XIb), 2,6-diaminopurine (XIc), cytosine (XIVa) and 6-azacytosine (XIVb). In an analogous reaction, sodium salt of 4-methoxy-2-pyrimidone reacted with compound IX to give an intermediate XIIIa which on treatment with methanolic ammonia and subsequent deblocking under the same conditions also afforded the cytosine derivative XIVa. Sodium salt of 2-amino-6-chloropurine was in this way converted into the corresponding 2-aminopurine derivative XVIII. Deprotection of this compound gave 9-(S)-(3-hydroxy-2-phosphonomethoxypropyl)-2-aminopurine (XIX).
Styles APA, Harvard, Vancouver, ISO, etc.
41

Atria, Ana María, José Parada, Maria Teresa Garland et Ricardo Baggio. « A polymeric cobalt(II) complex derived from citric acid (H4cit) and 2,6-diaminopurine (dap) : {[Co4(cit)2(dap)4(H2O)4]·6.35H2O}n ». Acta Crystallographica Section C Crystal Structure Communications 69, no 3 (5 février 2013) : 212–15. http://dx.doi.org/10.1107/s0108270113002230.

Texte intégral
Résumé :
Poly[[tetraaquadi-μ4-citrato-tetrakis(2,6-diaminopurine)tetracobalt(II)] 6.35-hydrate], {[Co4(C6H4O7)2(C5H6N6)4(H2O)4]·6.35H2O}n, presents three different types of CoIIcations in the asymmetric unit, two of them lying on symmetry elements (one on an inversion centre and the other on a twofold axis). The main fragment is further composed of one fully deprotonated citrate (cit) tetraanion, two 2,6-diaminopurine (dap) molecules and two aqua ligands. The structure is completed by a mixture of fully occupied and disordered solvent water molecules. The two independent dap ligands are neutral and the cit tetraanion provides for charge balance, compensating the 4+ cationic charge. There are two well defined coordination geometries in the structure. The simplest is mononuclear, with the CoIIcation arranged in a regular centrosymmetric octahedral array, coordinated by two aqua ligands, two dap ligands and two O atoms from the β-carboxylate groups of the bridging cit tetraanions. The second, more complex, group is trinuclear, bisected by a twofold axis, with the metal centres coordinated by two cit tetraanions through their α- and β-carboxylate and α-hydroxy groups, and by two dap ligands bridging through one of their pyridine and one of their imidazole N atoms. The resulting coordination geometry around each metal centre is distorted octahedral. Both groups are linked alternately to each other, defining parallel chains along [201], laterally interleaved and well connectedviahydrogen bonding to form a strongly coupled three-dimensional network. The compound presents a novel μ4-κ5O:O,O′:O′,O′′,O′′′:O′′′′ mode of coordination of the cit tetraanion.
Styles APA, Harvard, Vancouver, ISO, etc.
42

R. Kore, Anilkumar, et Irudaya Charles. « Synthesis of New Dinucleotide mRNA Cap Analogs Containing 2, 6-Diaminopurine Moiety ». Letters in Organic Chemistry 7, no 3 (1 avril 2010) : 200–202. http://dx.doi.org/10.2174/157017810791112388.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Zhou, Yan, Xuexia Xu, Yifeng Wei, Yu Cheng, Yu Guo, Ivan Khudyakov, Fuli Liu et al. « A widespread pathway for substitution of adenine by diaminopurine in phage genomes ». Science 372, no 6541 (29 avril 2021) : 512–16. http://dx.doi.org/10.1126/science.abe4882.

Texte intégral
Résumé :
DNA modifications vary in form and function but generally do not alter Watson-Crick base pairing. Diaminopurine (Z) is an exception because it completely replaces adenine and forms three hydrogen bonds with thymine in cyanophage S-2L genomic DNA. However, the biosynthesis, prevalence, and importance of Z genomes remain unexplored. Here, we report a multienzyme system that supports Z-genome synthesis. We identified dozens of globally widespread phages harboring such enzymes, and we further verified the Z genome in one of these phages, Acinetobacter phage SH-Ab 15497, by using liquid chromatography with ultraviolet and mass spectrometry. The Z genome endows phages with evolutionary advantages for evading the attack of host restriction enzymes, and the characterization of its biosynthetic pathway enables dZ-DNA production on a large scale for a diverse range of applications.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Gu, Zhengxian, Mark A. Wainberg, Paul Nguyen-ba, Lucille L'Heureux, Jean-Marc De Muys et Robert F. Rando. « Anti-HIV-1 Activities of 1,3-Dioxolane Guanine and 2,6-Diaminopurine Dioxolane ». Nucleosides and Nucleotides 18, no 4-5 (avril 1999) : 891–92. http://dx.doi.org/10.1080/15257779908041594.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Haaima, G. « Increased DNA binding and sequence discrimination of PNA oligomers containing 2,6-diaminopurine ». Nucleic Acids Research 25, no 22 (15 novembre 1997) : 4639–43. http://dx.doi.org/10.1093/nar/25.22.4639.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Lakshman, Mahesh K., Felix N. Ngassa, John C. Keeler, Yen Q. V. Dinh, John H. Hilmer et Larry M. Russon. « Facile Synthesis ofO6-Alkyl-,O6-Aryl-, and Diaminopurine Nucleosides from 2‘-Deoxyguanosine ». Organic Letters 2, no 7 (avril 2000) : 927–30. http://dx.doi.org/10.1021/ol005564m.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Kozlov, Igor A, et Leslie E Orgel. « Nonenzymatic Oligomerization Reactions on Templates Containing Inosinic Acid or Diaminopurine Nucleotide Residues ». Helvetica Chimica Acta 82, no 11 (10 novembre 1999) : 1799–805. http://dx.doi.org/10.1002/(sici)1522-2675(19991110)82:11<1799 ::aid-hlca1799>3.0.co;2-s.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Gunda, Padmaja, Larry M. Russon et Mahesh K. Lakshman. « Pd-Catalyzed Amination of Nucleoside Arylsulfonates to yieldN6-Aryl-2,6-Diaminopurine Nucleosides ». Angewandte Chemie International Edition 43, no 46 (26 novembre 2004) : 6372–77. http://dx.doi.org/10.1002/anie.200460782.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Gunda, Padmaja, Larry M. Russon et Mahesh K. Lakshman. « Pd-Catalyzed Amination of Nucleoside Arylsulfonates to yieldN6-Aryl-2,6-Diaminopurine Nucleosides ». Angewandte Chemie 116, no 46 (26 novembre 2004) : 6532–37. http://dx.doi.org/10.1002/ange.200460782.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Santhosh, C., et P. C. Mishra. « Electronic spectra of 2-aminopurine and 2,6-diaminopurine : phototautomerism and fluorescence reabsorption ». Spectrochimica Acta Part A : Molecular Spectroscopy 47, no 12 (janvier 1991) : 1685–93. http://dx.doi.org/10.1016/0584-8539(91)80006-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie