Littérature scientifique sur le sujet « Diaminopurine »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Diaminopurine ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Diaminopurine"
Weckbecker, Gisbert, et Joseph G. Cory. « Metabolic activation of 2,6-diaminopurine and 2,6-diaminopurine-2′-deoxyriboside to antitumor agents ». Advances in Enzyme Regulation 28 (janvier 1989) : 125–44. http://dx.doi.org/10.1016/0065-2571(89)90068-x.
Texte intégralCristofalo, Matteo, Daniel Kovari, Roberta Corti, Domenico Salerno, Valeria Cassina, David Dunlap et Francesco Mantegazza. « Nanomechanics of Diaminopurine-Substituted DNA ». Biophysical Journal 116, no 5 (mars 2019) : 760–71. http://dx.doi.org/10.1016/j.bpj.2019.01.027.
Texte intégralRobins, Morris J., Ruiming Zou, Fritz Hansske et Stanislaw F. Wnuk. « Synthesis of sugar-modified 2,6-diaminopurine and guanine nucleosides from guanosine via transformations of 2-aminoadenosine and enzymatic deamination with adenosine deaminase ». Canadian Journal of Chemistry 75, no 6 (1 juin 1997) : 762–67. http://dx.doi.org/10.1139/v97-092.
Texte intégralKrečmerová, Marcela, Milena Masojídková et Antonín Holý. « Synthesis of N9- and N7-[2-Hydroxy-3-(phosphonomethoxy)propyl] Derivatives of N6-Substituted Adenines, 2,6-Diaminopurines and Related Compounds ». Collection of Czechoslovak Chemical Communications 69, no 10 (2004) : 1889–913. http://dx.doi.org/10.1135/cccc20041889.
Texte intégralCanol, Angeles, Myron F. Goodman et Ramon Eritja. « Synthesis of Oligodeoxyribonucleotides Containing 2,6-Diaminopurine ». Nucleosides and Nucleotides 13, no 1-3 (mars 1994) : 501–9. http://dx.doi.org/10.1080/15257779408013258.
Texte intégralMédici, R., E. S. Lewkowicz et A. M. Iribarren. « Microbial synthesis of 2,6-diaminopurine nucleosides ». Journal of Molecular Catalysis B : Enzymatic 39, no 1-4 (mai 2006) : 40–44. http://dx.doi.org/10.1016/j.molcatb.2006.01.024.
Texte intégralLuyten, I., A. Van Aerschot, J. Rozenski, R. Busson et P. Herdewijn. « Protection of 2,6-Diaminopurine 2′-Deoxyriboside ». Nucleosides and Nucleotides 16, no 7-9 (juillet 1997) : 1649–52. http://dx.doi.org/10.1080/07328319708006247.
Texte intégralRosenbohm, Christoph, Daniel Sejer Pedersen, Miriam Frieden, Flemming R. Jensen, Susan Arent, Sine Larsen et Troels Koch. « LNA guanine and 2,6-diaminopurine. Synthesis, characterization and hybridization properties of LNA 2,6-diaminopurine containing oligonucleotides ». Bioorganic & ; Medicinal Chemistry 12, no 9 (mai 2004) : 2385–96. http://dx.doi.org/10.1016/j.bmc.2004.02.008.
Texte intégralCaldero-Rodríguez, Naishka E., Luis A. Ortiz-Rodríguez, Andres A. Gonzalez et Carlos E. Crespo-Hernández. « Photostability of 2,6-diaminopurine and its 2′-deoxyriboside investigated by femtosecond transient absorption spectroscopy ». Physical Chemistry Chemical Physics 24, no 7 (2022) : 4204–11. http://dx.doi.org/10.1039/d1cp05269a.
Texte intégralSalerno, Domenico, Claudia Adriana Marrano, Valeria Cassina, Matteo Cristofalo, Qing Shao, Laura Finzi, Francesco Mantegazza et David Dunlap. « Nanomechanics of negatively supercoiled diaminopurine-substituted DNA ». Nucleic Acids Research 49, no 20 (29 octobre 2021) : 11778–86. http://dx.doi.org/10.1093/nar/gkab982.
Texte intégralThèses sur le sujet "Diaminopurine"
CRISTOFALO, MATTEO. « Nanomechanics of DNA and DNA-ligand interactions : focus on structural polymorphism and DNA condensation ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2019. http://hdl.handle.net/10281/241313.
Texte intégralIn the last few decades, the constant development of novel microscopy techniques have created the basis for a new paradigm in the field of biophysics. Single-molecule techniques enabled to carry out experiments providing new information: the nanomanipulation of individual biomolecules revealed unknown insights into the elasticity and mechanics of molecules, improving the understanding of the fundamental relation between structural properties and biological functions. In particular, an AFM and mostly a MT setup were used during this thesis work, both located in biophysics laboratory of Prof. Francesco Mantegazza, at the University of Milano-Bicocca. Similar issues were encountered at the cellular level, because bulk experiments of conventional microscopy techniques provide information on average only, without taking into account the intrinsic biological heterogeneity. Recent developments in microfluidics enabled to follow individual cells over a long time and under controlled conditions. During the last part of this thesis project I used one of these microfluidic devices to perform time-lapse microscopy experiments at the single-cell level. These experiments were carried out during a visiting period of seven months in Prof. Pietro Cicuta’s laboratory, in Cavendish laboratory at University of Cambridge. In this thesis I dealt with three main research topics: • DNA structural polymorphism • nanomechanics of DNA-ligand interactions • the dual role of H-NS protein: DNA condensation and gene regulation The study of the conformational changes of DNA, namely the property of structural polymorphism, is addressed during two projects: one about the nanomechanics of a DNA analogue and another concerning the behavior of DNA at high supercoiling. The study of a DNA analogue enables to observe how a chemical modification of nucleotides can induce structural re- arrangements of the double-helix, biasing towards an A-like-form of DNA. The regimes of high supercoiling, both positive and negative supercoiling, show instead how an applied torsion at a certain forces can promote the formation of plectonemes or denaturation bubbles, which are conditions that favor particular structural transitions. The second major theme concerns the analysis of the nanomechanics of DNA-ligand complexes, particularly the interactions of DNA with anticancer drugs or with the H-NS protein and the crowding agent PEG. The project about the interactions between DNA and drugs clearly shows how the mechanical properties and the stability of DNA change due to the binding with compounds commonly used in clinics to treat tumors. On the other hand, the H-NS protein forms relatively stable DNA loops and influences the stability of the double helix, as well as the crowding agent. The protein binding mechanism has a preference for some DNA sequences and an unexpected concentration-dependent behavior. The analysis of the the DNA-H-NS interactions also enables, particularly in crowding conditions, to better understand the mechanism of DNA condensation inside the cell, one of the biological roles of H-NS. The second important function of this NAP is the gene regulation. To investigate the dual role of H-NS in great detail two complementary techniques have been combined. The nanoma- nipulation technique is employed to observe the structural role of H-NS and its combined activity with a crowding agent leading to a clear and abrupt compaction of DNA. Time-lapse fluorescence microscopy is instead used to study the regulatory role of the protein, more precisely the gene silencing mechanism, at the single-cell level. This activity has also a strong influence in the cell physiology, by significantly changing the growth rate of bacteria.
Chang, Chien Cecile. « Chemical mutagenesis in BW5147 mouse thymoma cell line induction of diaminopurine-resistant and bromodeoxyuridine-resistant mutants / ». 2002. http://catalog.hathitrust.org/api/volumes/oclc/50183454.html.
Texte intégralTypescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 73-77).
Diblíková, Denisa. « Studium transdermální a dermální absorpce acyklických nukleosidfosfonátů ze skupiny 2,6-diaminopurinu ». Master's thesis, 2013. http://www.nusl.cz/ntk/nusl-325077.
Texte intégralChapitres de livres sur le sujet "Diaminopurine"
« 2,6-Diaminopurine ». Dans Encyclopedia of Genetics, Genomics, Proteomics and Informatics, 501. Dordrecht : Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6754-9_4402.
Texte intégralActes de conférences sur le sujet "Diaminopurine"
Hosmane, Ramachandra, XiaoHua Xu et Zhiyuan Sun. « A Versatile Synthetic Precursor for Introduction of Specific N6-Modifications in 2,6-Diaminopurine Nucleosides:N2-Acetyl-2',3',5'-tri-O-acetyl-N6-(1,2,4-triazol-1-yl)- 2,6-diaminopurine-9--D-ribofuranoside. » Dans The 3rd International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland : MDPI, 1999. http://dx.doi.org/10.3390/ecsoc-3-01743.
Texte intégralSedláček, Ondřej, Radek Pohl et Antonín Holý. « Synthesis of 8-C-substituted 2,6-diaminopurine acyclic nucleoside phosphonates by Negishi cross-coupling ». Dans XIVth Symposium on Chemistry of Nucleic Acid Components. Prague : Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 2008. http://dx.doi.org/10.1135/css200810449.
Texte intégralBaszczyňski, Ondřej, Antonín Holý, Martin Dračínský et Blanka Klepetářová. « Synthesis of N9-(3-fluoro-2-phosphonomethoxypropyl) (FPMP) derivatives of N6-substituted adenines and 2,6-diaminopurines ». Dans XIVth Symposium on Chemistry of Nucleic Acid Components. Prague : Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 2008. http://dx.doi.org/10.1135/css200810315.
Texte intégral