Littérature scientifique sur le sujet « Depolymerization of cellulose fibres »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Depolymerization of cellulose fibres ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Depolymerization of cellulose fibres"

1

Pang, Suh Cem, Lee Ken Voon et Suk Fun Chin. « Controlled Depolymerization of Cellulose Fibres Isolated from Lignocellulosic Biomass Wastes ». International Journal of Polymer Science 2018 (19 juillet 2018) : 1–11. http://dx.doi.org/10.1155/2018/6872893.

Texte intégral
Résumé :
Various types of lignocellulosic biomass wastes (LBW) had been successfully converted into cello-oligomers with different chain lengths via a controlled depolymerization process. Cellulose fibres isolated from LBW samples were dissolved with room temperature ionic liquid (RTIL) in the presence of an acid catalyst, Amberlyst 15 DRY. The effects of reaction time on the degree of polymerization and yields of water-insoluble cello-oligomers formed were studied. Besides, the yields of water-soluble cello-oligomers such as glucose and xylose were also determined. The depolymerization of cellulose fibres isolated from LBW was observed to follow both second-order and pseudo-second order kinetics under specific conditions. As such, cello-oligomers of controllable chain lengths could be obtained by adjusting the duration of depolymerization process under optimized conditions.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kashcheyeva, Ekaterina I., Yulia A. Gismatulina, Galina F. Mironova, Evgenia K. Gladysheva, Vera V. Budaeva, Ekaterina A. Skiba, Vladimir N. Zolotuhin, Nadezhda A. Shavyrkina, Aleksey N. Kortusov et Anna A. Korchagina. « Properties and Hydrolysis Behavior of Celluloses of Different Origin ». Polymers 14, no 18 (18 septembre 2022) : 3899. http://dx.doi.org/10.3390/polym14183899.

Texte intégral
Résumé :
The present paper is a fundamental study on the physicochemical properties and hydrolysis behavior of cellulose samples differing in origin: bacterial, synthetic, and vegetal. Bacterial cellulose was produced by Medusomyces gisevii Sa-12 in an enzymatic hydrolyzate derived from oat-hull pulp. Synthetic cellulose was obtained from an aqueous glucose solution by electropolymerization. Plant-based cellulose was isolated by treatment of Miscanthus sacchariflorus with dilute NaOH and HNO3 solutions. We explored different properties of cellulose samples, such as chemical composition, degree of polymerization (DP), degree of crystallinity (DC), porosity, and reported infrared spectroscopy and scanning electron microscopy results. The hydrolysis behavior was most notable dependent on the origin of cellulose. For the bacterial cellulose sample (2010 DP, 90% DC, 89.4% RS yield), the major property affecting the hydrolysis behavior was its unique nanoscale reticulate structure promoting fast penetration of cellulases into the substrate structure. The study on enzymatic hydrolysis showed that the hydrolysis behavior of synthetic and Miscanthus celluloses was most influenced by the substrate properties such as DP, DC and morphological structure. The yield of reducing sugars (RS) by hydrolysis of synthetic cellulose exhibiting a 3140 DP, 80% DC, and highly depolymerization-resistant fibers was 27%. In contrast, the hydrolysis of Miscanthus-derived cellulose with a 1030 DP, 68% DC, and enzyme-accessible fibers provided the highest RS yield of 90%. The other properties examined herein (absence/presence of non-cellulosic impurities, specific surface, pore volume) had no considerable effect on the bioconversion of the cellulosic substrates.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Byrne, Nolene, Jingyu Chen et Bronwyn Fox. « Enhancing the carbon yield of cellulose based carbon fibres with ionic liquid impregnates ». J. Mater. Chem. A 2, no 38 (2014) : 15758–62. http://dx.doi.org/10.1039/c4ta04059g.

Texte intégral
Résumé :
We report the use of ionic liquids as novel impregnates to enhance the carbon yield of cellulose based carbon fibres. It was found that ILs which contain a phosphate anion improved the carbon yield the most, with a 50% increase in carbon yield reported. Additionally the use of the ionic liquid impregnate lowered the depolymerization temperature by 70 °C, which reflects significant potential saving in the energy costs of carbonization.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Trinh, Hue Thi Kim, et Mai Hương Bùi. « The Improving properties of Viscose fabric by water repellent finish ». Science & ; Technology Development Journal - Engineering and Technology 4, no 1 (13 mars 2021) : first. http://dx.doi.org/10.32508/stdjet.v4i1.788.

Texte intégral
Résumé :
Viscose as cellulosic origin, the cheapest of all cellulosic fabrics could be the best alternative. Viscose is manufactured from regenerated cellulose. In order to manufacture viscose, pulp of bamboo is treated with aqueous sodium hydroxide to form alkali cellulose. This alkali cellulose is then treated with carbon disulfide to form sodium cellulose xanthate. The xanthate is then dissolved in aqueous sodium hydroxide and allowed to depolymerize. After depolymerization, rayon fiber is produced from the ripened solution. Viscose is primarily employed in apparels, upholstery fabric, industrial clothing, and medical hygiene. Apparels, upholstery fabric, and industrial clothing segments account for key share of the viscose market. The medical hygiene segment is anticipated to expand during the forecast period. Demand for viscose fiber is anticipated to increase significantly in the near future due to the rise in global population, increase in standard of living, and growth in disposable income. Viscose is an eco-friendly product; thus, increase in awareness about eco-friendly products and decrease in production of cotton are estimated to augment the demand for viscose fiber. Viscose fabric exhibits some similar properties compared to cotton except its poor wet strength due to higher moisture regain. In this study, chemical finishes by different cross-linkers were applied to improve the wet strength of the viscose fabric. For this purpose, water repellent finishes were applied. Water repellent finish helped in reducing the molecular barrier around the individual fibres that lowered the surface tension of the fabric. It reduces the absorbency of viscose fabric hence leads to higher wet strength. Therefore, the treated viscose fabric exhibited better wet strength after applying water repellent finishes on it. Scanning electron microscope (SEM) was used to examine the surface of the fabric treated with chemicals. Tensile strength of viscose was increased 24.6%.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Wardhono, Endarto, Hadi Wahyudi, Sri Agustina, François Oudet, Mekro Pinem, Danièle Clausse, Khashayar Saleh et Erwann Guénin. « Ultrasonic Irradiation Coupled with Microwave Treatment for Eco-friendly Process of Isolating Bacterial Cellulose Nanocrystals ». Nanomaterials 8, no 10 (20 octobre 2018) : 859. http://dx.doi.org/10.3390/nano8100859.

Texte intégral
Résumé :
The isolation of crystalline regions from fibers cellulose via the hydrolysis route generally requires corrosive chemicals, high-energy demands, and long reaction times, resulting in high economic costs and environmental impact. From this basis, this work seeks to develop environment-friendly processes for the production of Bacterial Cellulose Nanocrystals (BC-NC). To overcome the aforementioned issues, this study proposes a fast, highly-efficient and eco-friendly method for the isolation of cellulose nanocrystals from Bacterial Cellulose, BC. A two-step processes is considered: (1) partial depolymerization of Bacterial Cellulose (DP-BC) under ultrasonic conditions; (2) extraction of crystalline regions (BC-NC) by treatment with diluted HCl catalyzed by metal chlorides (MnCl2 and FeCl3.6H2O) under microwave irradiation. The effect of ultrasonic time and reactant and catalyst concentrations on the index crystallinity (CrI), chemical structure, thermal properties, and surface morphology of DP-BC and BC-NC were evaluated. The results indicated that the ultrasonic treatment induced depolymerization of BC characterized by an increase of the CrI. The microwave assisted by MnCl2-catalyzed mild acid hydrolysis enhanced the removal of the amorphous regions, yielding BC-NC. A chemical structure analysis demonstrated that the chemical structures of DP-BC and BC-NC remained unchanged after the ultrasonic treatment and MnCl2-catalyzed acid hydrolysis process.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Keskiväli, Laura, Pirjo Heikkilä, Eija Kenttä, Tommi Virtanen, Hille Rautkoski, Antti Pasanen, Mika Vähä-Nissi et Matti Putkonen. « Comparison of the Growth and Thermal Properties of Nonwoven Polymers after Atomic Layer Deposition and Vapor Phase Infiltration ». Coatings 11, no 9 (26 août 2021) : 1028. http://dx.doi.org/10.3390/coatings11091028.

Texte intégral
Résumé :
The growth mechanism of Atomic Layer Deposition (ALD) on polymeric surfaces differs from growth on inorganic solid substrates, such as silicon wafer or glass. In this paper, we report the growth experiments of Al2O3 and ZnO on nonwoven poly-L-lactic acid (PLLA), polyethersulphone (PES) and cellulose acetate (CA) fibres. Material growth in both ALD and infiltration mode was studied. The structures were examined with a scanning electron microscope (SEM), scanning transmission electron microscope (STEM), attenuated total reflectance-fourier-transform infrared spectroscopy (ATR-FTIR) and 27Al nuclear magnetic resonance (NMR). Furthermore, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis were used to explore the effect of ALD deposition on the thermal properties of the CA polymer. According to the SEM, STEM and ATR-FTIR analysis, the growth of Al2O3 was more uniform than ZnO on each of the polymers studied. In addition, according to ATR-FTIR spectroscopy, the infiltration resulted in interactions between the polymers and the ALD precursors. Thermal analysis (TGA/DSC) revealed a slower depolymerization process and better thermal resistance upon heating both in ALD-coated and infiltrated fibres, more pronounced on the latter type of structures, as seen from smaller endothermic peaks on TA.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Baty, John William, et Michael L. Sinnott. « The kinetics of the spontaneous, proton- and AlIII-catalysed hydrolysis of 1,5-anhydrocellobiitol — Models for cellulose depolymerization in paper aging and alkaline pulping, and a benchmark for cellulase efficiency ». Canadian Journal of Chemistry 83, no 9 (1 septembre 2005) : 1516–24. http://dx.doi.org/10.1139/v05-168.

Texte intégral
Résumé :
The kinetics of the spontaneous, proton- and AlIII-catalysed hydrolyses of the C1—O4′ bond in 1,5-anhydrocellobiitol have been measured at elevated temperatures (125.0–220.0 °C). Data for the first two processes extrapolate to the expression k = (8.6 ± 2.1 × 10–16) + (1.4 ± 0.2 × 10–9-pH) s–1 at 25 °C. These room-temperature figures were used to model cellulose depolymerization by the af Ekenstam equation. The spontaneous process is too slow to contribute to loss of paper strength on aging, and even the acid-catalysed process is significant only below ~pH 4.0. However, the spontaneous hydrolysis readily accounts for the reduction of cellulose degree of polymerization (DP) during alkaline (e.g., kraft) pulping of cellulose fibres. Efficient electrophilic catalysis by AlIII was observed at 150.0 °C in 0.1 mol/L succinate buffers of room temperature pH 3.05 and 3.35 (k2 = 8.1 ± 0.4 × 10–3 and 4.2 ± 0.2 × 10–3 (mol/L) –1 s–1, respectively). The apparent activation energy of the AlIII-catalysed process was 31 ± 4 kJ mol-1, lower than that of the proton-catalysed path, suggesting the electrophilic catalysis increases in importance as the temperature approaches ambient. Consequently, it appears that the culprit in the impermanence of “rosin-alum” -sized paper is AlIII, directly acting as a Lewis acid, not the AlIII hydration sphere as a Brønsted acid. Conservation measures should either address this or be generic (e.g., low-temperature storage). Key words: cellulose, hydrolysis, kraft pulping, paper conservation, rosin-alum sizing.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Fouad, H., Lau Kia Kian, Mohammad Jawaid, Majed D. Alotaibi, Othman Y. Alothman et Mohamed Hashem. « Characterization of Microcrystalline Cellulose Isolated from Conocarpus Fiber ». Polymers 12, no 12 (7 décembre 2020) : 2926. http://dx.doi.org/10.3390/polym12122926.

Texte intégral
Résumé :
Conocarpus fiber is an abundantly available and sustainable cellulosic biomass. With its richness in cellulose content, it is potentially used for manufacturing microcrystalline cellulose (MCC), a cellulose derivative product with versatile industrial applications. In this work, different samples of bleached fiber (CPBLH), alkali-treated fiber (CPAKL), and acid-treated fiber (CPMCC) were produced from Conocarpus through integrated chemical process of bleaching, alkaline cooking, and acid hydrolysis, respectively. Characterizations of samples were carried out with Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDX), Fourier Transform Infrared-Ray (FTIR), X-ray Diffraction (XRD), Thermogravimetric (TGA), and Differential Scanning Calorimetry (DSC). From morphology study, the bundle fiber feature of CPBLH disintegrated into micro-size fibrils of CPMCC, showing the amorphous compounds were substantially removed through chemical depolymerization. Meanwhile, the elemental analysis also proved that the traces of impurities such as cations and anions were successfully eliminated from CPMCC. The CPMCC also gave a considerably high yield of 27%, which endowed it with great sustainability in acting as alternative biomass for MCC production. Physicochemical analysis revealed the existence of crystalline cellulose domain in CPMCC had contributed it 75.7% crystallinity. In thermal analysis, CPMCC had stable decomposition behavior comparing to CPBLH and CPAKL fibers. Therefore, Conocarpus fiber could be a promising candidate for extracting MCC with excellent properties in the future.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Voon, Lee Ken, Suh Cem Pang et Suk Fun Chin. « Regeneration of cello-oligomers via selective depolymerization of cellulose fibers derived from printed paper wastes ». Carbohydrate Polymers 142 (mai 2016) : 31–37. http://dx.doi.org/10.1016/j.carbpol.2016.01.027.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Mafa, Mpho S., Brett I. Pletschke et Samkelo Malgas. « Defining the Frontiers of Synergism between Cellulolytic Enzymes for Improved Hydrolysis of Lignocellulosic Feedstocks ». Catalysts 11, no 11 (8 novembre 2021) : 1343. http://dx.doi.org/10.3390/catal11111343.

Texte intégral
Résumé :
Lignocellulose has economic potential as a bio-resource for the production of value-added products (VAPs) and biofuels. The commercialization of biofuels and VAPs requires efficient enzyme cocktail activities that can lower their costs. However, the basis of the synergism between enzymes that compose cellulolytic enzyme cocktails for depolymerizing lignocellulose is not understood. This review aims to address the degree of synergism (DS) thresholds between the cellulolytic enzymes and how this can be used in the formulation of effective cellulolytic enzyme cocktails. DS is a powerful tool that distinguishes between enzymes’ synergism and anti-synergism during the hydrolysis of biomass. It has been established that cellulases, or cellulases and lytic polysaccharide monooxygenases (LPMOs), always synergize during cellulose hydrolysis. However, recent evidence suggests that this is not always the case, as synergism depends on the specific mechanism of action of each enzyme in the combination. Additionally, expansins, nonenzymatic proteins responsible for loosening cell wall fibers, seem to also synergize with cellulases during biomass depolymerization. This review highlighted the following four key factors linked to DS: (1) a DS threshold at which the enzymes synergize and produce a higher product yield than their theoretical sum, (2) a DS threshold at which the enzymes display synergism, but not a higher product yield, (3) a DS threshold at which enzymes do not synergize, and (4) a DS threshold that displays anti-synergy. This review deconvolutes the DS concept for cellulolytic enzymes, to postulate an experimental design approach for achieving higher synergism and cellulose conversion yields.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Depolymerization of cellulose fibres"

1

Bélanger, Karine. « Controlled depolymerization and decrystallization of cellulose-rich substrates into glucose ». Mémoire, Université de Sherbrooke, 2005. http://savoirs.usherbrooke.ca/handle/11143/1483.

Texte intégral
Résumé :
The energy needs are increasing rapidly throughout the world. To fulfill this need, new environmentally friendly energy sources must be developed. Production of bio-ethanol from lignocellulosics, a renewable resource, has a favorable life cycle compared to actual fossil fuels or to bio-ethanol from starch.The main difficulty is to obtain the sugars from the rigid cellulose matrix characteristic of lignocellulosics.The sugars would then be fermented into ethanol. Scientists generally follow two approaches to develop the sugar production process from lignocellulosics, (1) acid hydrolysis and (2) enzymatic hydrolysis. Both approaches produce high glucose recoveries; however, both processes have been, so far, economically unattractive and rely, as the corn-linked process, on subsidies. This project attempts to develop improved methods that make the sugar production from lignocellulosics economically attractive.The acid hydrolysis process is based on the ASTM E1758-95 method, referred to as"Determination of carbohydrates in biomass by HPLC". Our innovation has been to modify the"swelling" and hydrolysis steps inherent in the ASTM method, by using a mediator to produce a more concentrated solution of sugars.The experiment presented in this thesis proves that that proposed innovation is technically feasible. However, the economical feasibility of our innovation hinges upon the recovery and recycling of the acid and mediator.The enzymatic hydrolysis innovation is based on using the substrates produced by steam treatment and evaluating whether or not their enzymatic hydrolysis is preferred (less enzymes and less time) over processes with pre-treated but non-fractionated substrates or in relation to high-purity cellulose as the ultimate standard. Our research shows that time and enzymatic loading are the main factors controlling the hydrolysis. When compared with these two factors, the type of substrate has little effect on enzymatic hydrolysis. From this information, it can be deduced that crystallinity is the key limiting step and barrier to enzymatic activity.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Yeoh, Sang Ju. « Electrospun cellulose fibres from kraft pulp ». Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/12930.

Texte intégral
Résumé :
Cellulose, the most abundant biomass extractable from wood, was generated in fibre form from kraft pulp by electrospinning, a fibre-producing process using electrostatic forces. Kraft pulping is the most dominant pulping technique in North America. Kraft pulp fibres (diam. 30μm) have a tensile strength of 700MPa and elastic modulus of 20GPa. In comparison, individual cellulose nanofibrils (diam. 5nm) have a tensile strength of 10GPa and elastic modulus of 150GPa. The strength displayed by cellulose nanofibrils suggests that the smaller fibre diameter could lead to a lower probability of including smaller flaw sizes in the fibre. Electrospinning has been successfully demonstrated as a one-step process to produce cellulose fibres directly from kraft pulp, thereby showing great potential for reducing cost and making the fibre-producing process more environmental friendly. Based on SEM and XRD, the electrospun fibres have a fibrillation-free, nano-filament structure with a seemingly cellulose I crystal structure, indicating significant potential for making crystalline cellulose fibres directly from kraft pulp. Contact angle measurements show that the electrospun fibres appear more hydrophobic than kraft pulp. The mechanical properties of the electrospun fibres have a large variation, suggesting the need for further process optimization. The ability to produce cellulose fibres directly from kraft pulp with improved moisture resistance and mechanical properties could potentially result in the development of more high value-added products for the Canadian pulp and paper industry, and perhaps even globally.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Bengtsson, Andreas. « Carbon fibres from lignin-cellulose precursors ». Licentiate thesis, KTH, Träkemi och massateknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-244756.

Texte intégral
Résumé :
It is in the nature of the human species to find solutions of complex technical problems and always strive for improvements. The development of new materials is not an exception. One of the many man-made materials is carbon fibre (CF). Its excellent mechanical properties and low density have made it attractive as the reinforcing agent in lightweight composites. However, the high price of CF originating from expensive production is currently limiting CF from wider utilisation, e.g. in the automotive sector.   The dominating raw material used in CF production is petroleum-based polyacrylonitrile (PAN). The usage of fossil-based precursors and the high price of CF explain the strong driving force of finding cheaper and renewable alternatives. Lignin and cellulose are renewable macromolecules available in high quantities. The high carbon content of lignin is an excellent property, while its structural heterogeneity yields in CF with poor mechanical properties. In contrast, cellulose has a beneficial molecular orientation, while its low carbon content gives a low processing yield and thus elevates processing costs.   This work shows that several challenges associated with CF processing of each macromolecule can be mastered by co-processing. Dry-jet wet spun precursor fibres (PFs) made of blends of softwood kraft lignin and kraft pulps were converted into CF. The corresponding CFs demonstrated significant improvement in processing yield with negligible loss in mechanical properties relative to cellulose-derived CFs. Unfractionated softwood kraft lignin and paper grade kraft pulp performed as good as more expensive retentate lignins and dissolving grade kraft pulp, which is beneficial from an economic point of view.   The stabilisation stage is considered the most time-consuming step in CF manufacturing. Here it was shown that the PFs could be oxidatively stabilised in less than 2 h or instantly carbonised without any fibre fusion, suggesting a time-efficient processing route. It was demonstrated that PF impregnation with ammonium dihydrogen phosphate significantly improves the yield but at the expense of mechanical properties.   A reduction in fibre diameter was beneficial for the mechanical properties of the CFs made from unfractionated softwood kraft lignin and paper grade kraft pulp. Short oxidative stabilisation (<2 h) of thin PFs ultimately provided CFs with tensile modulus and strength of 76 GPa and 1070 MPa, respectively. Considering the high yield (39 wt%), short stabilisation time and promising mechanical properties, the concept of preparing CF from lignin:cellulose blends is a very promising route.
Det ligger i människans natur att hitta lösningar på komplexa tekniska problem, samt att alltid sträva efter förbättringar. Utvecklingen av nya material är inget undantag. Ett av flera material utvecklade av människan är kolfiber. Dess utmärkta mekaniska egenskaper samt låga densitet har gjort det attraktivt som förstärkningsmaterial i lättviktskompositer. Det höga priset på kolfiber, vilket härstammar ur en kostsam framställningsprocess, har förhindrat en mer utbredd användning i exempelvis bilindustrin.   Det dominerande råmaterialet för kolfiberframställning är petroleumbaserad polyacrylonitril (PAN). Användandet av fossila råvaror och det höga priset på kolfiber förklarar den starka drivkraften att hitta billigare och förnyelsebara alternativ. Lignin och cellulosa är förnyelsebara makromolekyler som finns tillgängliga i stora kvantiteter. Det höga kolinnehållet i lignin gör det mycket attraktivt som råvara för kolfiberframställning, men dess heterogena struktur ger en kolfiber med otillräckliga mekaniska egenskaper. Däremot har cellulosa en molekylär orientering som är önskvärd vid framställning av kolfiber, men dess låga kolinehåll ger ett lågt processutbyte som i sin tur bidrar till höga produktionskostnader.             Det här arbetet visar att många av de problem som uppstår med kolfiber från respektive råvara kan kringgås genom att utgå från blandningar av desamma. Prekursorfibrer från blandningar av kraftlignin och kraftmassa från barrved tillverkade med luftgapsspinning konverterades till kolfiber. Utbytet för kolfibrerna som framställdes var mycket högre än vid framställning från endast cellulosa. Ofraktionerat barrvedslignin och kraftmassa av papperskvalitet presterade lika bra som de dyrare retentatligninen och dissolvingmassan, vilket är fördelaktigt ur ett ekonomiskt perspektiv.   Stabilisering är det mest tidskrävande processteget i kolfibertillverkning. I det här arbetet visades det att prekursorfibrerna kunde stabiliseras på kortare än två timmar, eller direktkarboniseras utan någon sammansmältning av fibrerna. Detta indikerar att en tidseffektiv produktion kan vara möjligt. Impregnering av prekursorfibrerna med ammoniumdivätefosfat ökade utbytet avsevärt, men med lägre mekaniska egenskaper som bieffekt.           Kolfibrernas mekaniska egenskaper ökade vid en diameterreduktion. En kort oxidativ stabilisering under två timmar i kombination med tunna prekursorfibrer gav kolfiber med en elasticitetsmodul på 76 GPa och dragstyrka på 1070 MPa. Att göra kolfiber från blandningar av lignin och cellulosa är ett lovande koncept om det höga utbytet (39%), den korta stabiliseringstiden samt de lovande mekaniska egenskaperna tas i beaktande.

QC 20190226

Styles APA, Harvard, Vancouver, ISO, etc.
4

Hilgert, Jakob [Verfasser], Ferdi [Akademischer Betreuer] Schüth et Martin [Akademischer Betreuer] Muhler. « Mechanocatalytic depolymerization of cellulose and subsequent hydrogenation / Jakob Hilgert. Gutachter : Ferdi Schüth ; Martin Muhler ». Bochum : Ruhr-Universität Bochum, 2015. http://d-nb.info/1079843728/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Li, Yingjie. « Emulsion electrospinning of nanocrystalline cellulose reinforced nanocomposite fibres ». Thesis, University of British Columbia, 2010. http://hdl.handle.net/2429/30474.

Texte intégral
Résumé :
Cellulose is the most abundant renewable and biodegradable natural polymer. Cellulose can release nanocrystalline cellulose (NCC). NCC is light-weight, biodegradable and strong. The strength of NCC is about 10 GPa, which is almost three times stronger than commercial high performance fibre such as Kevlar® and Spectra®. In order to realize the utmost translation of NCCs’ extraordinary properties to higher order structures, it is necessary to accomplish a well-controlled alignment and tailored distribution of NCCs within a matrix. However, it is challenging to achieve this goal since NCCs tend to agglomerate in matrix materials. To address this problem in the present study, NCC water- in-oil (W/O) emulsions were prepared, consisting of a drop phase of NCC aqueous suspension and a continuous phase of immiscible poly (lactic acid) (PLA) solution. NCC W/O PLA emulsions were electrospun into NCC reinforced nanocomposite fibres. The concept of emulsion electrospinning of NCCs is based on that (1) NCC can be stably and uniformly dispersed in the intermediate medium water; (2) NCC aqueous suspension can be dispersed in the form of droplets into the immiscible solutions of PLA solution system; and (3) the well dispersed NCC / PLA emulsion can be electrospun into fibres. In this work, to better control electrospinning of NCC/PLA emulsions, we started with electrospinning of W/O PLA emulsions consisting of a drop phase of distilled water and a continuous phase of hydrophobic PLA solution. This emulsion formulation for electrospinning was optimized using response surface methodology (RSM) to identify the optimal conditions for W/O PLA electrospinning. After optimizing the W/O PLA emulsion electrospinning process, the feasibility of the emulsion electrospinning of NCC W/O PLA was confirmed and the emulsion electrospun 5% NCC/ 8% PLA random fibre mats and aligned fibre yarns were collected. The distribution and alignment of NCCs in fibres were verified. The morphology, structure and properties of resultant fibres were characterized. The mechanism of the formation of fibre structure (core-shell and hollow) was also proposed and validated by the study of emulsion droplet size effect on fibre structure.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Qi, Haisong, Jianwen Liu, Yinhu Deng, Shanglin Gao et Edith Mäder. « Cellulose fibres with carbon nanotube networks for water sensing ». Royal Society of Chemistry, 2014. https://tud.qucosa.de/id/qucosa%3A36157.

Texte intégral
Résumé :
Electroconductive cellulose-based fibres were fabricated by depositing multi-walled carbon nanotubes (MWNTs) on the surface using a simple and scalable dip coating. The morphology, mechanical properties and conductive properties of the resultant MWNT–cellulose fibres were investigated by scanning electron microscopy, tensile testing and electrical resistance measurement, respectively. The resistance (RL) of the single MWNT–cellulose fibre can be controlled in a wide range of 50–200 000 kΩ cmˉ¹ by varying the conditions of dip coating. The sensing behaviour of these fibres to liquid water was investigated in detail. The results showed that they exhibit rapid response, high sensitivity and good reproducibility to water, with a relative electrical resistance change of about 100–8000% depending on the initial resistance. It was proposed that the disconnection of MWNT networks caused by swelling effects of the cellulose fibres is the dominant mechanism. Moreover, the sensitivity of the MWNT–cellulose fibres to an electrolyte solution was also investigated.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Benoit, Maud. « Dépolymérisation catalytique de la cellulose couplée à des techniques d’activation non thermiques ». Thesis, Poitiers, 2012. http://www.theses.fr/2012POIT2270.

Texte intégral
Résumé :
Avec la disparition progressive des réserves de carbone fossile, un intérêt tout particulier est aujourd’hui porté sur la valorisation de la biomasse notamment la cellulose. Elle représente une source importante (1,3 Millions de tonnes) et peu onéreuse (< 10 €/kg) de carbone renouvelable. L’utilisation de la cellulose en tant que matière première pour la chimie fine apparait comme une solution attractive tant sur le plan économique qu’environnemental. Néanmoins, la présence de liaisons hydrogène intra et extra réseau lui confère une stabilité élevée (forte cristallinité) la rendant insoluble dans les solvants organiques usuels et dans l’eau. Ainsi, l’hydrolyse de ce polymère en glucose ou oligosaccharides, en présence d’un catalyseur solide est limitée par les interactions catalyseur/cellulose. C’est pourquoi, des prétraitements de la cellulose sont souvent utilisés permettant alors d’augmenter les interactions avec les catalyseurs solides. Toutefois, les méthodes développées dans la littérature sont coûteuses ou néfastes pour l’environnement. L’objectif de cette étude est le développement d’activations physiques de la cellulose, respectueuses de l’environnement, permettant l’hydrolyse de ce polymère en présence d’un catalyseur solide. L’activation de la cellulose est effectuée par ultrasons ou par plasma atmosphérique non thermique. Ces méthodes d’activation permettent d’augmenter considérablement le rendement en glucose en modifiant i) la taille des particules et/ou ii) le degré de polymérisation et/ou iii) la cristallinité de la cellulose. Enfin, à partir des sucres issus de la dépolymérisation de la cellulose, le 5- hydroxyméthylfurfural (molécule plateforme) peut être obtenu. Cette synthèse sera étudiée et plus particulièrement la nature du solvant, qui impacte la sélectivité de cette réaction. Lors de ces travaux, un intérêt tout particulier est porté sur l’utilisation de glycérol et de carbonate de glycérol en tant que solvant
With the depletion of fossil carbon resources, biomass (including cellulose) is widely introduced in the chemical industry, as a renewable source of carbon. Cellulose is a huge reservoir (1,3 Million tons) of cheap (< 10 €/kg) and non-edible carbon. So use cellulose as raw material has many advantages, as much as economic plan than environmental one. However, due to important inter and intra hydrogen bonds network, cellulose is highly crystalline and thus insoluble in common solvents (including water) and recalcitrant to hydrolysis by heterogeneous catalysis, due to solid/solid interactions. A preliminary step consists in the activation of cellulose to enhance the solid/solid interactions. However, the pretreatments used in the literature are limited by the cost, corrosiveness, and toxicity. The aim of this study is to develop physical pretreatments of cellulose in order to be environmentally friendly and promote cellulose/catalyst interactions. In this manuscript, two physical methods of cellulose activation will be explored. The first involves a sonic treatment and the second implies non-thermal atmospheric plasma technology. These methods lead to an increase of the glucose yield due to the change of i) the particle size, or/and ii) the degree of polymerization or/and iii) the cristallinity. From carbohydrate obtained via the depolymerisation of cellulose, 5-hydroxymethylfurfural (platform molecule) is achieved. This synthesis, including dehydration of fructose, will be studied and especially, the nature of the solvent which is a key point ofthis conversion will be discussed. In this work glycerol or glycerol carbonate-based media were studied, as co-solvent from renewable carbon
Styles APA, Harvard, Vancouver, ISO, etc.
8

Le, Moigne Nicolas. « Mécanismes de gonflement et de dissolution des fibres de cellulose ». Phd thesis, École Nationale Supérieure des Mines de Paris, 2008. http://tel.archives-ouvertes.fr/tel-00353429.

Texte intégral
Résumé :
Le but de ces travaux était d'étudier les mécanismes de gonflement et de dissolution des fibres de cellulose en faisant varier la qualité du solvant (N-methylmorpholine-N-oxide avec différentes quantités d'eau et solutions aqueuses de NaOH à 8%), les conditions de dissolution, comme la tension, et l'origine des fibres (coton, bois, fibres régénérées ou dérivées). Les mécanismes de gonflement et de dissolution ont été étudiés par des observations microscopiques à haute résolution. Une séparation sélective des fractions solubles et insolubles a été réalisée par centrifugation. La distribution de masse molaire, la cristallinité, la composition en sucre, l'allomorphie et la quantité de chaque fraction ont été analysées. A partir de ces résultats, nous avons pu mieux décrire les mécanismes de gonflement et de dissolution des fibres de cellulose et ainsi identifier les principaux paramètres gouvernant la dissolution. Nos résultats montrent que les caractéristiques structurales et moléculaires des fibres de cellulose ainsi que les paramètres de procédés doivent être mieux contrôlés afin d'améliorer la dissolution. (i) Les paramètres de procédés concernent la convection du solvant et la possibilité de mouvements des fibres dans le solvant, (ii) les paramètres structuraux concernent la suppression des parois externes, la déstructuration des parois internes et la suppression sélectives des hémicelluloses, (iii) les paramètres moléculaires concernent la thermodynamique, comme la longueur des chaînes, la cristallinité mais aussi l'amélioration de la mobilité conformationelle des chaînes.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ly, El Hadji Babacar. « Nouveaux matériaux composites thermoformables à base de fibres de cellulose ». Phd thesis, Grenoble INPG, 2008. http://tel.archives-ouvertes.fr/tel-00268828.

Texte intégral
Résumé :
Cette étude s'inscrit dans le cadre de la recherche de solutions alternative à l'utilisation des matières fossiles et à la pollution que les matériaux issus de cette filière (les emballages plastiques par exemple) peuvent causer. L'objectif est de préparer de nouveaux matériaux composites à base de matière première issue de ressources renouvelables tels que les biopolymères. Notre choix s'est orienté vers l'utilisation de fibres de cellulose et de polymères thermoplastiques biodégradables. La préparation de ces matériaux composites nécessite de compatibiliser, ou de copolymériser, les fibres et la matrice. Pour arriver à cette fin, des modifications chimiques sont effectuées sur l'un des constituants par le biais d'agents de couplage bi-fonctionnels (dianhydrides, diisocyanates, silanes et polyoléfines fonctionnalisés). La mise en œuvre des matériaux se fait par des techniques utilisées en industries plastiques (extrusion, coulée-évaporation ou "solvent casting"). La biodégradabilité et les propriétés thermomécaniques de ces matériaux, avant et après vieillissement des matériaux, sont étudiées.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Quajai, Sirisart, et soj@kmitnb ac th. « Biopolymer Composite based on Natural and Derived Hemp Cellulose Fibres ». RMIT University. Applied Sciences, 2006. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20061222.111612.

Texte intégral
Résumé :
The aim of this research was to study the effect of pre-treatment and modification processes on the properties of hemp cellulose fibre for biopolymer composites application. Hemp fibres have been modified by various extraction, swelling, chemical and enzymatic treatments. The morphology and mechanical properties of the modified fibres have been measured. Biopolymer composites have been prepared using the modified fibres and matrices of cellulose acetate butyrate and cellulose solutions derived from hemp. The first fibre treatment employed was acetone extraction and mercerization. A low pressure acrylonitrile grafting initiated by azo-bis-isobutylonitrile was performed using alkali treated fibre. The AN grafted fibres had no transformation of crystalline structure as observed after mercerization. The mechanical properties performed by a single fibre test method were strongly influenced by the cellulose structure, lateral index of crystallinity, and fraction of grafting. Bioscouring of hemp using pectate lyase (EC 4.2.2.2), Scourzyme L, was performed. Greater enzyme concentration and a longer treatment improved the removal of the low methoxy pectin component. Removal of pectate caused no crystalline transformation in the fibres, except for a slight decline in the X-ray crystalline order index. Smooth surfaces and separated fibres were evidence of successful treatment. The shortening of fibre by grinding and ball-milling was introduced to achieve a desired fibre size. An increase in the milling duration gradual ly destroyed the crystalline structure of the cellulose fibres. An increase in solvent polarity, solvent-fibre ratio, agitation speed and drying rate resulted in the rearrangement of the ball-milled cellulose crystalline structure to a greater order. The thermal degradation behaviour of hemp fibres was investigated by using TGA. The greater activation energy of treated hemp fibre compared with untreated fibre represented an increase in purity and improvement of structural order. The all hemp cellulose composites were prepared by an introduction of fibres into 12% cellulose N-methyl-morpholine N-oxide (NMMO) solution and water-ethanol regeneration. A broadening of the scattering of the main crystalline plane, (002) and a depression of the maximum degradation temperature of the fibres were observed. These revealed a structural change in the fibres arising from the preparation. The mechanical properties of composites depended on size, surface area, crystallinity and the structural swelling of the fibres. Composites of cellulose acetate butyrate (CAB) and modified hemp fibres were prepared. Composites containing pectate lyase enzyme treated fibres showed better mechanical property improvement than untreated and alkali treated fibres respectively.
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Depolymerization of cellulose fibres"

1

Calvin, Woodings, et Textile Institute (Manchester England), dir. Regenerated cellulose fibres. Boca Raton, FL : CRC Press, 2001.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Sfiligoj Smole, Majda, Silvo Hribernik, Manja Kurečič, Andreja Urbanek Krajnc, Tatjana Kreže et Karin Stana Kleinschek. Surface Properties of Non-conventional Cellulose Fibres. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-10407-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

1942-, Kennedy John F., Phillips Glyn O, Williams Peter A et Cellucon '98 Finland (1998 : Turku, Finland), dir. Cellulosic pulps, fibres and materials. Cambridge, England : Woodhead Pub., 2000.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Clifford, Preston, et Society of Dyers and Colourists., dir. The dyeing of cellulosic fibres. Bradford, West Yorkshire : Dyers' Company Publications Trust, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Cellulosic materials : Fibers, networks, and composites. Boston, Mass : Kluwer Academic Publishers, 2002.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Peltonen, Petri. Asphalt mixtures modified with tall oil pitches and cellulose fibres. Espoo, Finland : VTT, Technical Research Centre of Finland, 1992.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

S, Kaith B., Kaur Inderjeet et SpringerLink (Online service), dir. Cellulose Fibers : Bio- and Nano-Polymer Composites : Green Chemistry and Technology. Berlin, Heidelberg : Springer-Verlag Berlin Heidelberg, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

W, Perkins Richard, American Society of Mechanical Engineers. Applied Mechanics Division., American Society of Mechanical Engineers. Materials Division. et ASME Joint Applied Mechanics and Materials Division Meeting (1999 : Syracuse, New York), dir. Mechanics of cellulosic materials, 1999 : Presented at the 1999 ASME Joint Applied Mechanics and Materials Division Meeting : June 27-30, 1999, Blacksburg, Virginia. New York : American Society of Mechanical Engineers, 1999.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Woodings, Calvin. Regenerated cellulose fibres. Woodhead Publishing Limited, 2001. http://dx.doi.org/10.1533/9781855737587.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Woodings, C. Regenerated Cellulose Fibres. Elsevier Science & Technology, 2001.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Depolymerization of cellulose fibres"

1

Shimamoto, Shu, Takayuki Kohmoto et Tohru Shibata. « Depolymerization of Cellulose and Cellulose Triacetate in Conventional Acetylation System ». Dans ACS Symposium Series, 194–200. Washington, DC : American Chemical Society, 1998. http://dx.doi.org/10.1021/bk-1998-0688.ch014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Prado, Karen S., Asaph A. Jacinto et Márcia A. S. Spinacé. « Cellulose Nanostructures Extracted from Pineapple Fibres ». Dans Pineapple Leaf Fibers, 185–234. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1416-6_10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Adusumalli, Ramesh Babu, Karthik Chethan Venkateshan et Wolfgang Gindl-Altmutter. « Micromechanics of Cellulose Fibres and Their Composites ». Dans Wood is Good, 299–321. Singapore : Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3115-1_28.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Northolt, M. G. « The Similarity Between Cellulose and Aramid Fibres ». Dans Integration of Fundamental Polymer Science and Technology, 567–72. Dordrecht : Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4185-4_70.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Thomas, S., S. A. Paul, L. A. Pothan et B. Deepa. « Natural Fibres : Structure, Properties and Applications ». Dans Cellulose Fibers : Bio- and Nano-Polymer Composites, 3–42. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17370-7_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Sfiligoj Smole, Majda, Silvo Hribernik, Manja Kurečič, Andreja Urbanek Krajnc, Tatjana Kreže et Karin Stana Kleinschek. « Structure and Properties of Non-conventional Cellulose Fibres ». Dans SpringerBriefs in Molecular Science, 49–59. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-10407-8_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Wendler, Frank, Thomas Schulze, Danuta Ciechanska, Ewa Wesolowska, Dariusz Wawro, Frank Meister, Tatiana Budtova et Falk Liebner. « Cellulose Products from Solutions : Film, Fibres and Aerogels ». Dans The European Polysaccharide Network of Excellence (EPNOE), 153–85. Vienna : Springer Vienna, 2012. http://dx.doi.org/10.1007/978-3-7091-0421-7_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Ramesh, M., et C. Deepa. « Properties of Cellulose Based Bio-fibres Reinforced Polymer Composites ». Dans Biofibers and Biopolymers for Biocomposites, 71–89. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40301-0_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Lee, Y. A. « Case Study of Renewable Bacteria Cellulose Fiber and Biopolymer Composites in Sustainable Design Practices ». Dans Sustainable Fibres for Fashion Industry, 141–62. Singapore : Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0522-0_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Boufi, Sami, et Sabrine Alila. « Modified Cellulose Fibres as a Biosorbent for the Organic Pollutants ». Dans Biopolymers, 483–524. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118164792.ch17.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Depolymerization of cellulose fibres"

1

Stevulova, Nadezda, et Viola Hospodarova. « Cellulose Fibres Used in Building Materials ». Dans Advanced HVAC and Natural Gas Technologies. Riga : Riga Technical University, 2015. http://dx.doi.org/10.7250/rehvaconf.2015.031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Missaoui, Mohamed, Evelyne Mauret, Mohamed Naceur Belgacem, Alberto D’Amore, Domenico Acierno et Luigi Grassia. « RETENTION OF CATIONIC STARCH ONTO CELLULOSE FIBRES ». Dans IV INTERNATIONAL CONFERENCE TIMES OF POLYMERS (TOP) AND COMPOSITES. AIP, 2008. http://dx.doi.org/10.1063/1.2989078.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Axelsson, Maria. « 3D Tracking of Cellulose Fibres in Volume Images ». Dans 2007 IEEE International Conference on Image Processing. IEEE, 2007. http://dx.doi.org/10.1109/icip.2007.4380016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Hospodarova, Viola, Nadezda Stevulova, Vojtech Vaclavik, Tomas Dvorsky et Jaroslav Briancin. « Cellulose Fibres as a Reinforcing Element in Building Materials ». Dans Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.104.

Texte intégral
Résumé :
Nowadays, construction sector is focusing in developing sustainable, green and eco-friendly building materials. Natural fibre is growingly being used in composite materials. This paper provides utilization of cellulose fibres as reinforcing agent into cement composites/plasters. Provided cellulosic fibres coming from various sources as bleached wood pulp and recycled waste paper fibres. Differences between cellulosic fibres are given by their physical characterization, chemical composition and SEM micrographs. Physical and mechanical properties of fibre-cement composites with fibre contents 0.2; 0.3and 0.5% by weight of filler and binder were investigated. Reference sample without fibres was also produced. The aim of this work is to investigate the effects of cellulose fibres on the final properties (density, water absorbability, coefficient of thermal conductivity and compressive strength) of the fibrecement plasters after 28 days of hardening. Testing of plasters with varying amount of cellulose fibres (0.2, 0.3 and 0.5 wt. %) has shown that the resulting physical and mechanical properties depend on the amount, the nature and structure of the used fibres. Linear dependences of compressive strength and thermal conductivity on density for plasters with cellulosic fibres adding were observed.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Milestone, N. B. « Interactions of cellulose fibres in an autoclaved cement matrix ». Dans International RILEM Symposium on Concrete Science and Engineering : A Tribute to Arnon Bentur. RILEM Publications SARL, 2004. http://dx.doi.org/10.1617/2912143586.014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Wang, Z., H. Xiao et M. Sain. « Poly (butyl acrylate)-Modified Cellulose Fibres for Toughening WPC ». Dans SAE World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States : SAE International, 2007. http://dx.doi.org/10.4271/2007-01-0574.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Gaiolas, Carla, Maria Emilia Amaral, Ana Paula Costa, Manuel José Santos Silva et Mohamed Naceur Belgacem. « Cold-plasma assisted grafting of cellulose fibres by acrylic monomers ». Dans 6TH INTERNATIONAL CONFERENCE ON TIMES OF POLYMERS (TOP) AND COMPOSITES. AIP, 2012. http://dx.doi.org/10.1063/1.4738475.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Gaiolas, C., A. P. Costa, M. J. Santos Silva et M. N. Belgacem. « Cold-plasma assisted hydrophobisation of cellulose fibres with styrene and para-halogenated homologues ». Dans 6TH INTERNATIONAL CONFERENCE ON TIMES OF POLYMERS (TOP) AND COMPOSITES. AIP, 2012. http://dx.doi.org/10.1063/1.4738471.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Pavlin, Majda, Barbara Horvat et Vilma Ducman. « Fibre Reinforced Alkali-Activated Rock Wool ». Dans International Conference on Technologies & Business Models for Circular Economy. University of Maribor Press, 2022. http://dx.doi.org/10.18690/um.fkkt.2.2022.6.

Texte intégral
Résumé :
Mineral wool, i.e. rock and glass wool, represents considerable challenge after its functional-time runs out due to its small density leading to large volume consumption during transport and in landfills where it usually ends. Because rock wool is mineralogically and chemically a promising precursor material for alkali-activation, it was milled from few centimetres-decimeters long fibres to micron-sized fibres. Since fibres in alkali-activated materials generally show an increase in mechanical strength, especially the bending strength, 1 m% of additional fibres (basalt, cellulose (2 types), glass, polypropylene, polyvinyl alcohol and steel fibres) was used in the alkali mixture, that was curred at 40 °C for 3 days. Time dependence of the mechanical strengths of alkali-activated materials with and without additional fibres was followed. Maximal increase of compressive and bending strength after 28 days was reached with polypropylene fibres, i.e. it was 20% and 30% higher than compressive and bending strength of alkali-activated material without additional fibres respectively.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Kovalovs, Andrejs, Kaspars Kalnins, Piotr Franciszczak et Andrzej Bledzki. « Low velocity impact response of polypropylene biocomposites reinforced with man-made cellulose and soft wood fibres ». Dans 19th International Scientific Conference Engineering for Rural Development. Latvia University of Life Sciences and Technologies, Faculty of Engineering, 2020. http://dx.doi.org/10.22616/erdev.2020.19.tf369.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie