Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Dendritic Block Copolymers.

Articles de revues sur le sujet « Dendritic Block Copolymers »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Dendritic Block Copolymers ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Brito, Mariano E., Sofia E. Mikhtaniuk, Igor M. Neelov, Oleg V. Borisov et Christian Holm. « Implicit-Solvent Coarse-Grained Simulations of Linear–Dendritic Block Copolymer Micelles ». International Journal of Molecular Sciences 24, no 3 (1 février 2023) : 2763. http://dx.doi.org/10.3390/ijms24032763.

Texte intégral
Résumé :
The design of nanoassemblies can be conveniently achieved by tuning the strength of the hydrophobic interactions of block copolymers in selective solvents. These block copolymer micelles form supramolecular aggregates, which have attracted great attention in the area of drug delivery and imaging in biomedicine due to their easy-to-tune properties and straightforward large-scale production. In the present work, we have investigated the micellization process of linear–dendritic block copolymers in order to elucidate the effect of branching on the micellar properties. We focus on block copolymers formed by linear hydrophobic blocks attached to either dendritic neutral or charged hydrophilic blocks. We have implemented a simple protocol for determining the equilibrium micellar size, which permits the study of linear–dendritic block copolymers in a wide range of block morphologies in an efficient and parallelizable manner. We have explored the impact of different topological and charge properties of the hydrophilic blocks on the equilibrium micellar properties and compared them to predictions from self-consistent field theory and scaling theory. We have found that, at higher degrees of branching in the corona and for short polymer chains, excluded volume interactions strongly influence the micellar aggregation as well as their effective charge.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Trollsås, Mikael, Hans Claesson, Björn Atthoff et James L. Hedrick. « Layered Dendritic Block Copolymers ». Angewandte Chemie International Edition 37, no 22 (4 décembre 1998) : 3132–36. http://dx.doi.org/10.1002/(sici)1521-3773(19981204)37:22<3132 ::aid-anie3132>3.0.co;2-b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Fernandez-Megia, Eduardo, Juan Correa et Ricardo Riguera. « “Clickable” PEG−Dendritic Block Copolymers ». Biomacromolecules 7, no 11 (novembre 2006) : 3104–11. http://dx.doi.org/10.1021/bm060580d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Blasco, Eva, Milagros Piñol et Luis Oriol. « Responsive Linear-Dendritic Block Copolymers ». Macromolecular Rapid Communications 35, no 12 (6 avril 2014) : 1090–115. http://dx.doi.org/10.1002/marc.201400007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Liu, Xin, F. Max Yavitt et Ivan Gitsov. « Supramolecular Linear-Dendritic Nanoreactors : Synthesis and Catalytic Activity in “Green” Suzuki-Miyaura Reactions ». Polymers 15, no 7 (28 mars 2023) : 1671. http://dx.doi.org/10.3390/polym15071671.

Texte intégral
Résumé :
This study describes the synthesis of novel amphiphilic linear-dendritic block copolymers and their self-assembly in water to form supramolecular nanoreactors capable of catalyzing Suzuki-Miyaura coupling reactions under “green” conditions. The block copolymers were formed through copper(I)-catalyzed alkyne-azide cycloaddition between azide functionalized poly(benzyl ether) dendrons as the perfectly branched blocks, as well as bis-alkyne modified poly(ethylene glycol), PEG, as the linear block. A first-generation poly(benzyl ether) dendron (G1) was coupled to a bis-alkyne modified PEG with molecular mass of 5 kDa, forming an ABA copolymer (G1)2-PEG5k-(G1)2 (yield 62%), while a second-generation dendron (G2) was coupled to a 11 kDa bis-alkyne modified PEG to produce (G2)2-PEG11k-(G2)2 (yield 49%). The structural purity and low dispersity of the linear-dendritic copolymers were verified by size-exclusion chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Their self-assembly was studied by dynamic light scattering, showing that (G1)2-PEG5k-(G1)2 and (G2)2-PEG11k-(G2)2 formed single populations of micelles (17 nm and 37 nm in diameter, respectively). The triazole rings located at the boundaries between the core and the corona are efficient chelating groups for transition metals. The ability of the micelles to complex Pd was confirmed by 1H NMR, transmission electron microscopy, and inductively coupled plasma. The catalytic activity of the supramolecular linear-dendritic/Pd complexes was tested in water by model Suzuki-Miyaura reactions in which quantitative yields were achieved within 3 h at 40 °C, while, at 17 °C, a yield of more than 70% was attained after 17 h.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Babutan, Iulia, Otto Todor-Boer, Leonard Ionut Atanase, Adriana Vulpoi et Ioan Botiz. « Crystallization of Poly(ethylene oxide)-Based Triblock Copolymers in Films Swollen-Rich in Solvent Vapors ». Coatings 13, no 5 (14 mai 2023) : 918. http://dx.doi.org/10.3390/coatings13050918.

Texte intégral
Résumé :
In this study, we employed a polymer processing method based on solvent vapor annealing in a confined environment to swell-rich thin films of polybutadiene-b-poly(2-vinylpyridine)-b-poly(ethylene oxide) triblock copolymers and to promote their crystallization. As revealed by optical and atomic force microscopy, thin films of triblock copolymers containing a rather short crystalline poly(ethylene oxide) block that was massively obstructed by the other two blocks were unable to crystallize following the spin-casting process, and their further swelling in solvent vapors was necessary in order to produce polymeric crystals displaying a dendritic morphology. In comparison, thin films of triblock copolymers containing a much longer poly(ethylene oxide) block that was less obstructed by the other two blocks were shown to crystallize into dendritic structures right after the spin-casting procedure, as well as upon rich swelling in solvent vapors.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Sousa-Herves, Ana, Christian Sánchez Espinel, Amir Fahmi, África González-Fernández et Eduardo Fernandez-Megia. « In situ nanofabrication of hybrid PEG-dendritic–inorganic nanoparticles and preliminary evaluation of their biocompatibility ». Nanoscale 7, no 9 (2015) : 3933–40. http://dx.doi.org/10.1039/c4nr06155a.

Texte intégral
Résumé :
An in situ template fabrication of inorganic nanoparticles using carboxylated PEG-dendritic block copolymers of the GATG family is described as a function of the dendritic block generation, the metal (Au, CdSe) and metal molar ratio.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Chang, Youngkyu, Young Chul Kwon, Sang Cheon Lee et Chulhee Kim. « Amphiphilic Linear PEO−Dendritic Carbosilane Block Copolymers ». Macromolecules 33, no 12 (juin 2000) : 4496–500. http://dx.doi.org/10.1021/ma9908853.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kim, Joo-Ho, Eunyoung Lee, Jun-Sik Park, Kazunori Kataoka et Woo-Dong Jang. « Dual stimuli-responsive dendritic-linear block copolymers ». Chemical Communications 48, no 30 (2012) : 3662. http://dx.doi.org/10.1039/c2cc17205d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Sousa-Herves, Ana, Ricardo Riguera et Eduardo Fernandez-Megia. « PEG-dendritic block copolymers for biomedical applications ». New J. Chem. 36, no 2 (2012) : 205–10. http://dx.doi.org/10.1039/c2nj20849k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Xie, Chao, Zhenhua Ju, Chao Zhang, Yuliang Yang et Junpo He. « Dendritic Block and Dendritic Brush Copolymers through Anionic Macroinimer Approach ». Macromolecules 46, no 4 (13 février 2013) : 1437–46. http://dx.doi.org/10.1021/ma3025317.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Chang, Youngkyu, et Chulhee Kim. « Synthesis and photophysical characterization of amphiphilic dendritic-linear-dendritic block copolymers ». Journal of Polymer Science Part A : Polymer Chemistry 39, no 6 (2001) : 918–26. http://dx.doi.org/10.1002/1099-0518(20010315)39:6<918 ::aid-pola1066>3.0.co;2-p.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Tian, Lu, Phuong Nguyen et Paula T. Hammond. « Vesicular self-assembly of comb–dendritic block copolymers ». Chem. Commun., no 33 (2006) : 3489–91. http://dx.doi.org/10.1039/b608363c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Zhang, Weiwei, Weiwei Jiang, Delong Zhang, Guangyue Bai, Pengxiao Lou et Zhiguo Hu. « Synthesis, characterization and association behavior of linear-dendritic amphiphilic diblock copolymers based on poly(ethylene oxide) and a dendron derived from 2,2′-bis(hydroxymethyl)propionic acid ». Polymer Chemistry 6, no 12 (2015) : 2274–82. http://dx.doi.org/10.1039/c4py01385a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Leiro, Victoria, João Pedro Garcia, Pedro M. D. Moreno, Ana Patrícia Spencer, Marcos Fernandez-Villamarin, Ricardo Riguera, Eduardo Fernandez-Megia et Ana Paula Pêgo. « Biodegradable PEG–dendritic block copolymers : synthesis and biofunctionality assessment as vectors of siRNA ». Journal of Materials Chemistry B 5, no 25 (2017) : 4901–17. http://dx.doi.org/10.1039/c7tb00279c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Namazi, Hassan, et Mohsen Adeli. « Solution proprieties of dendritic triazine/poly(ethylene glycol)/dendritic triazine block copolymers ». Journal of Polymer Science Part A : Polymer Chemistry 43, no 1 (2004) : 28–41. http://dx.doi.org/10.1002/pola.20471.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Sousa-Herves, Ana, Ricardo Riguera et Eduardo Fernandez-Megia. « ChemInform Abstract : PEG-Dendritic Block Copolymers for Biomedical Applications ». ChemInform 43, no 22 (3 mai 2012) : no. http://dx.doi.org/10.1002/chin.201222210.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Hawker, Craig J., Karen L. Wooley et Jean M. J. Fréchet. « Novel macromolecular architectures : Globular block copolymers containing dendritic components ». Macromolecular Symposia 77, no 1 (janvier 1994) : 11–20. http://dx.doi.org/10.1002/masy.19940770105.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Marcos, Alejandra García, Thomas M. Pusel, Ralf Thomann, Tadeusz Pakula, Lidia Okrasa, Steffen Geppert, Wolfram Gronski et Holger Frey. « Linear-Hyperbranched Block Copolymers Consisting of Polystyrene and Dendritic Poly(carbosilane) Block ». Macromolecules 39, no 3 (février 2006) : 971–77. http://dx.doi.org/10.1021/ma051526c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Wei, Lin, You, Qian, Wang et Bi. « Self-Assembly and Enzyme Responsiveness of Amphiphilic Linear-Dendritic Block Copolymers Based on Poly(N-vinylpyrrolidone) and Dendritic Phenylalanyl-lysine Dipeptides ». Polymers 11, no 10 (8 octobre 2019) : 1625. http://dx.doi.org/10.3390/polym11101625.

Texte intégral
Résumé :
In this study, we present the synthesis, self-assembly, and enzyme responsive nature of a unique class of well-defined amphiphilic linear-dendritic block copolymers (PNVP-b-dendr(Phe-Lys)n, n = 1–3) based on linear poly(N-vinylpyrrolidone) (PNVP) and dendritic phenylalanyl-lysine (Phe-Lys) dipeptides. The copolymers were prepared via a combination ofreversible addition-fragmentation chain transfer (RAFT) /xanthates (MADIX) polymerization of N-vinylpyrrolidone and stepwise peptide chemistry. The results of fluorescence spectroscopy, 1H NMR analyses, transmission electron microscopy (TEM), and particle size analysis demonstrated that the copolymers self-assemble in aqueous solution into micellar nanocontainers that can disassemble and release encapsulated anticancer drug doxorubicin or hydrophobic dye Nile red by trigger of a serine protease trypsin under physiological conditions. The disassembly of the formed micelles and release rates of the drug or dye can be adjusted by changing the generation of dendrons in PNVP-b-dendr(Phe-Lys)n. Furthermore, the cytocompatibility of the copolymers have been confirmed using human lung epithelial cells (BEAS-2B) and human liver cancer cells (SMMC-7721). Due to the fact of their enzyme responsive properties and good biocompatibility, the copolymers may have potential applicability in smart controlled release systems capable of site-specific response.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Tang, Gang, Minqi Hu, Yongcui Ma, Dan You et Yunmei Bi. « Synthesis and solution properties of novel thermo- and pH-responsive poly(N-vinylcaprolactam)-based linear–dendritic block copolymers ». RSC Advances 6, no 49 (2016) : 42786–93. http://dx.doi.org/10.1039/c6ra04327e.

Texte intégral
Résumé :
This study describes the synthesis and solution properties of the novel linear–dendritic block copolymers (LDBCs) based on thermoresponsive poly(N-vinylcaprolactam) (PNVCL) chains and pH-responsive poly(benzyl ether) dendrons.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Tavakoli Naeini, Ashkan, Manouchehr Vossoughi et Mohsen Adeli. « Simultaneously Synthesis and Encapsulation of Metallic Nanoparticles Using Linear–Dendritic Block Copolymers of Poly(ethylene glycol)-Poly(citric acid) ». Key Engineering Materials 478 (avril 2011) : 7–12. http://dx.doi.org/10.4028/www.scientific.net/kem.478.7.

Texte intégral
Résumé :
Linear-dendritic triblock copolymers of linear poly(ethylene glycol) and hyperbranched poly(citric acid) (PCA-PEG-PCA) were used as the reducing and capping agents to encapsulate gold and silver nanoparticles (AuNPs and AgNPs). PCA-PEG-PCA copolymers in four different molecular weights were synthesized using 2, 5, 10 and 20 citric acid/PEG molar ratios and were called A1, A2, A3 and A4, respectively. Nanoparticles were encapsulated simultaneously during the preparation process. AuNPs were simply synthesized and encapsulated by addition a boiling aqueous solution of HAuCl4 to aqueous solutions of A1, A2, A3 and A4. In the case of silver, an aqueous solution of AgNO3 was reduced using NaBH4 and AgNPs were encapsulated simultaneously by adding aqueous solutions of different PCA-PEG-PCA to protect the fabricated silver nanoparticles from aggregation. Encapsulated AuNPs and AgNPs were stable in water for several months and agglomeration did not occur. The synthesized silver and gold nanoparticles have been encapsulated within PCA-PEG-PCA macromolecules and have been studied using Transmission Electron Microscopy (TEM) and UV/Vis absorption spectroscopy. Studies reveal that there was a reverse relation between the size of synthesized AuNPs/AgNPs and the size of citric acid parts of PCA-PEG-PCA copolymers. For example, the prepared gold and silver nanoparticles by A3 copolymer are of an average size of 8 nm and 16 nm respectively. Finally, the loading capacity of A1, A2, A3 and A4 and the size of synthesized AuNPs and AgNPs were investigated using UV/Vis data and the corresponding calibration curve. It was found that the loading capacity of copolymers depends directly on the concentration of copolymers and their molecular weight.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Liu, Xin, Tina Monzavi et Ivan Gitsov. « Controlled ATRP Synthesis of Novel Linear-Dendritic Block Copolymers and Their Directed Self-Assembly in Breath Figure Arrays ». Polymers 11, no 3 (21 mars 2019) : 539. http://dx.doi.org/10.3390/polym11030539.

Texte intégral
Résumé :
Herein, we report the formation and characterization of novel amphiphilic linear-dendritic block copolymers (LDBCs) composed of hydrophilic dendritic poly(ether-ester), PEE, blocks and hydrophobic linear poly(styrene), PSt. The LDBCs are synthesized via controlled atom transfer radical polymerization (ATRP) initiated by a PEE macroinitiator. The copolymers formed have narrow molecular mass distributions and are designated as LGn-PSt Mn, in which LG represents the PEE fragment, n denotes the generation of the dendron (n = 1–3), and Mn refers to the average molecular mass of the LDBC (Mn = 3.5–68 kDa). The obtained LDBCs are utilized to fabricate honeycomb films by a static “breath figure” (BF) technique. The copolymer composition strongly affects the film morphology. LDBCs bearing acetonide dendron end groups produce honeycomb films when the PEE fraction is lower than 20%. Pore uniformity increases as the PEE content decreases. For LDBCs with hydroxyl end groups, only the first generation LDBCs yield BF films, but with a significantly smaller pore size (0.23 μm vs. 1–2 μm, respectively). Although higher generation LDBCs with free hydroxyl end groups fail to generate honeycomb films by themselves, the use of a cosolvent or addition of homo PSt leads to BF films with a controllable pore size (3.7–0.42 μm), depending on the LDBC content. Palladium complexes within the two triazole groups in each of the dendron’s branching moieties can also fine-tune the morphology of the BF films.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Hamadani, Christine M., Indika Chandrasiri, Mahesh Loku Yaddehige, Gaya S. Dasanayake, Iyanuoluwani Owolabi, Alex Flynt, Mehjabeen Hossain et al. « Improved nanoformulation and bio-functionalization of linear-dendritic block copolymers with biocompatible ionic liquids ». Nanoscale 14, no 16 (2022) : 6021–36. http://dx.doi.org/10.1039/d2nr00538g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Gong, Yongji, Weihua Song, Yifan Wu, Daohai Zhang, Yufei Liu, Qian Zhao, Min He et Xiaolang Chen. « Effect of chain segment length on crystallization behaviors of poly(l-lactide-b-ethylene glycol-b-l-lactide) triblock copolymer ». Polymers and Polymer Composites 28, no 2 (22 juillet 2019) : 77–88. http://dx.doi.org/10.1177/0967391119863951.

Texte intégral
Résumé :
The poly(l-lactide-b-ethylene glycol-b-l-lactide) (PLLA-PEG-PLLA) triblock copolymers with different chain segment length are fabricated by ring-opening polymerization. The structure, molecular weight, and crystallization behaviors of the triblock copolymers are characterized by Fourier transform infrared, nuclear magnetic resonance spectroscopy, gel permeation in chromatography, X-ray diffraction, differential scanning calorimetry, and polarizing optical microscopy (POM). The results show that the increase of block length is beneficial to improve its crystallization. In addition, the triblock copolymer exhibits a double crystallization phenomenon. The POM results indicate that PEG and PLLA chains of the copolymer crystallize in their respective crystallization temperature regions. The growth rate of the PLLA spherocrystal decreases and the dendritic spherocrystals appear with increasing the PEG chain length when the PLLA chain of the copolymer is isothermal crystallized at 80°C and PLLA chain length is constant. The growth rate of the PEG spherocrystal decreases and the spherocrystal morphology changes little with increasing PLLA chain length when the PEG chain is isothermal crystallized at 25°C and the length of PEG chain remained unchanged.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Kalva, Nagendra, Nimisha Parekh et Ashootosh V. Ambade. « Controlled micellar disassembly of photo- and pH-cleavable linear-dendritic block copolymers ». Polymer Chemistry 6, no 38 (2015) : 6826–35. http://dx.doi.org/10.1039/c5py00792e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Wang, Fang, Zhiqing Zhang, Tao Wang, Yunze Li et Mei Cui. « Synthesis, Characterization, and Demulsification Behavior of Amphiphilic Dendritic Block Copolymers ». Journal of Dispersion Science and Technology 36, no 8 (7 novembre 2014) : 1097–105. http://dx.doi.org/10.1080/01932691.2014.950741.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Trollsås, Mikael, Björn Atthoff, Hans Claesson et James L. Hedrick. « Dendritic homopolymers and block copolymers : Tuning the morphology and properties ». Journal of Polymer Science Part A : Polymer Chemistry 42, no 5 (1 mars 2004) : 1174–88. http://dx.doi.org/10.1002/pola.11088.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Bi, Yunmei, Caixian Yan, Lidong Shao, Yufei Wang, Yongcui Ma et Gang Tang. « Well-defined thermoresponsive dendritic polyamide/poly(N -vinylcaprolactam) block copolymers ». Journal of Polymer Science Part A : Polymer Chemistry 51, no 15 (3 mai 2013) : 3240–50. http://dx.doi.org/10.1002/pola.26716.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Lang, Andreas S., Franz René Kogler, Michael Sommer, Ulrich Wiesner et Mukundan Thelakkat. « Semiconductor Dendritic-Linear Block Copolymers by Nitroxide Mediated Radical Polymerization ». Macromolecular Rapid Communications 30, no 14 (3 juillet 2009) : 1243–48. http://dx.doi.org/10.1002/marc.200900203.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Liu, Yan, Chao Lin, Jianbo Li, Yang Qu et Jie Ren. « In vitro and in vivo gene transfection using biodegradable and low cytotoxic nanomicelles based on dendritic block copolymers ». Journal of Materials Chemistry B 3, no 4 (2015) : 688–99. http://dx.doi.org/10.1039/c4tb01406e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Lebedeva, Inna O., Ekaterina B. Zhulina et Oleg V. Borisov. « Self-Assembly of Linear-Dendritic and Double Dendritic Block Copolymers : From Dendromicelles to Dendrimersomes ». Macromolecules 52, no 10 (7 mai 2019) : 3655–67. http://dx.doi.org/10.1021/acs.macromol.9b00140.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Jeong, Moon Gon, Jan C. M. van Hest et Kyoung Taek Kim. « Self-assembly of dendritic-linear block copolymers with fixed molecular weight and block ratio ». Chemical Communications 48, no 30 (2012) : 3590. http://dx.doi.org/10.1039/c2cc17231c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Qian, Yangyang, Dan You, Feng Lin, Junwu Wei, Yujia Wang et Yunmei Bi. « Enzyme triggered disassembly of amphiphilic linear-dendritic block copolymer micelles based on poly[N-(2-hydroxyethyl-l-glutamine)] ». Polymer Chemistry 10, no 1 (2019) : 94–105. http://dx.doi.org/10.1039/c8py01231h.

Texte intégral
Résumé :
New amphiphilic linear-dendritic diblock copolymers based on poly[N-(2-hydroxyethyl-l-glutamine)] have been synthesized, and their micellar assemblies can disassemble and release encapsulated molecular cargo upon enzymatic activation.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Abad, Miriam, Alejandro Martínez-Bueno, Gracia Mendoza, Manuel Arruebo, Luis Oriol, Víctor Sebastián et Milagros Piñol. « Supramolecular Functionalizable Linear–Dendritic Block Copolymers for the Preparation of Nanocarriers by Microfluidics ». Polymers 13, no 5 (25 février 2021) : 684. http://dx.doi.org/10.3390/polym13050684.

Texte intégral
Résumé :
Hybrid linear–dendritic block copolymers (LDBCs) having dendrons with a precise number of peripheral groups that are able to supramolecular bind functional moieties are challenging materials as versatile polymeric platforms for the preparation of functional polymeric nanocarriers. PEG2k-b-dxDAP LDBCs that are based on polyethylene glycol (PEG) as hydrophilic blocks and dendrons derived from bis-MPA having 2,6-diacylaminopyridine (DAP) units have been efficiently synthesized by the click coupling of preformed blocks, as was demonstrated by spectroscopic techniques and mass spectrometry. Self-assembly ability was first checked by nanoprecipitation. A reproducible and fast synthesis of aggregates was accomplished by microfluidics optimizing the total flow rate and phase ratio to achieve spherical micelles and/or vesicles depending on dendron generation and experimental parameters. The morphology and size of the self-assemblies were studied by TEM, Cryogenic Transmission Electron Microscopy (cryo-TEM), and Dynamic Light Scattering (DLS). The cytotoxicity of aggregates synthesized by microfluidics and the influence on apoptosis and cell cycle evaluation was studied on four cell lines. The self-assemblies are not cytotoxic at doses below 0.4 mg mL−1. Supramolecular functionalization using thymine derivatives was explored for reversibly cross-linking the hydrophobic blocks. The results open new possibilities for their use as drug nanocarriers with a dynamic cross-linking to improve nanocarrier stability but without hindering disassembly to release molecular cargoes.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Dong, Chang-Ming, et Gang Liu. « Linear–dendritic biodegradable block copolymers : from synthesis to application in bionanotechnology ». Polym. Chem. 4, no 1 (2013) : 46–52. http://dx.doi.org/10.1039/c2py20441j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Gitsov, Ivan, et Jean M. J. Frechet. « Solution and solid-state properties of hybrid linear-dendritic block copolymers ». Macromolecules 26, no 24 (novembre 1993) : 6536–46. http://dx.doi.org/10.1021/ma00076a035.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Lee, Hyung-il, Jung Ah Lee, Zhiyong Poon et Paula T. Hammond. « Temperature-triggered reversible micellar self-assembly of linear–dendritic block copolymers ». Chemical Communications, no 32 (2008) : 3726. http://dx.doi.org/10.1039/b807561a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Trolls�s, Mikael, Craig J. Hawker, Jules F. Remenar, James L. Hedrick, Mats Johansson, Henrik Ihre et Anders Hult. « Highly branched radial block copolymers via dendritic initiation of aliphatic polyesters ». Journal of Polymer Science Part A : Polymer Chemistry 36, no 15 (15 novembre 1998) : 2793–98. http://dx.doi.org/10.1002/(sici)1099-0518(19981115)36:15<2793 ::aid-pola16>3.0.co;2-m.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Gitsov, Ivan, Karen L. Wooley, Craig J. Hawker, Pavlina T. Ivanova et Jean M. J. Frechet. « Synthesis and properties of novel linear-dendritic block copolymers. Reactivity of dendritic macromolecules toward linear polymers ». Macromolecules 26, no 21 (octobre 1993) : 5621–27. http://dx.doi.org/10.1021/ma00073a014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Al-Muallem, Hasan A., et Daniel M. Knauss. « Synthesis of hybrid dendritic-linear block copolymers with dendritic initiators prepared by convergent living anionic polymerization ». Journal of Polymer Science Part A : Polymer Chemistry 39, no 1 (2000) : 152–61. http://dx.doi.org/10.1002/1099-0518(20010101)39:1<152 ::aid-pola170>3.0.co;2-s.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Namazi, Hassan, et Mohsen Adeli. « Synthesis of barbell-like triblock copolymers, dendritic triazine-block-poly(ethylene glycol)-block-dendritic triazine and investigation of their solution behaviors ». Polymer 46, no 24 (novembre 2005) : 10788–99. http://dx.doi.org/10.1016/j.polymer.2005.09.020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Yu, Dong, Nikolay Vladimirov et Jean M. J. Fréchet. « MALDI-TOF in the Characterizations of Dendritic−Linear Block Copolymers and Stars ». Macromolecules 32, no 16 (août 1999) : 5186–92. http://dx.doi.org/10.1021/ma981734n.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Zhang, Zhiqing, et Fang Wang. « Aggregation Behavior of Polyether Block Copolymers with Dendritic Structure in Aqueous Solutions ». Journal of Dispersion Science and Technology 29, no 8 (21 août 2008) : 1092–97. http://dx.doi.org/10.1080/01932690701817669.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Wurm, Frederik, et Holger Frey. « Linear–dendritic block copolymers : The state of the art and exciting perspectives ». Progress in Polymer Science 36, no 1 (janvier 2011) : 1–52. http://dx.doi.org/10.1016/j.progpolymsci.2010.07.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

García-Juan, Hugo, Aurora Nogales, Eva Blasco, Juan Carlos Martínez, Igor Šics, Tiberio A. Ezquerra, Milagros Piñol et Luis Oriol. « Self-assembly of thermo and light responsive amphiphilic linear dendritic block copolymers ». European Polymer Journal 81 (août 2016) : 621–33. http://dx.doi.org/10.1016/j.eurpolymj.2015.12.021.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Puskas, Judit E., Yongmoon Kwon, Prince Antony et Anil K. Bhowmick. « Synthesis and characterization of novel dendritic (arborescent, hyperbranched) polyisobutylene-polystyrene block copolymers ». Journal of Polymer Science Part A : Polymer Chemistry 43, no 9 (2005) : 1811–26. http://dx.doi.org/10.1002/pola.20638.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Magbitang, Teddie, Victor Y. Lee, Jennifer N. Cha, Hsiao-Lin Wang, W. Richard Chung, Robert D. Miller, Geraud Dubois, Willi Volksen, Ho-Cheol Kim et James L. Hedrick. « Oriented Nanoporous Lamellar Organosilicates Templated from Topologically Unsymmetrical Dendritic-Linear Block Copolymers ». Angewandte Chemie 117, no 46 (25 novembre 2005) : 7746–52. http://dx.doi.org/10.1002/ange.200501577.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Magbitang, Teddie, Victor Y. Lee, Jennifer N. Cha, Hsiao-Lin Wang, W. Richard Chung, Robert D. Miller, Geraud Dubois, Willi Volksen, Ho-Cheol Kim et James L. Hedrick. « Oriented Nanoporous Lamellar Organosilicates Templated from Topologically Unsymmetrical Dendritic-Linear Block Copolymers ». Angewandte Chemie International Edition 44, no 46 (25 novembre 2005) : 7574–80. http://dx.doi.org/10.1002/anie.200501577.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Zhang, Weian, Sixun Zheng et Qipeng Guo. « Synthesis and characterization of dendritic star-shaped poly(ε-caprolactone)-block-poly(L-lactide) block copolymers ». Journal of Applied Polymer Science 106, no 1 (2007) : 417–24. http://dx.doi.org/10.1002/app.26484.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie