Thèses sur le sujet « Degenerate equation »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleures thèses pour votre recherche sur le sujet « Degenerate equation ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
Tepoyan, L. « The mixed problem for a degenerate operator equation ». Universität Potsdam, 2008. http://opus.kobv.de/ubp/volltexte/2009/3033/.
Texte intégralBrinkschulte, Judith. « The Cauchy-Riemann equation with support conditions in domains with Levi degenerate boundaries ». [S.l.] : [s.n.], 2002. http://dochost.rz.hu-berlin.de/dissertationen/brinkschulte-judith-2002-04-19.
Texte intégralPicard, Sebastien. « A priori estimates of the degenerate Monge-Ampère equation on compact Kähler manifolds ». Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119756.
Texte intégralLa question de la régularité des solutions de l'équation complexe Monge-Ampère dégénérée est étudiée. Premièrement, l'équation est considérée sur une variété compacte Kahler sans frontière. Une revue des concepts clés de la géométrie Kahler est présentée. Étant donné une solution de l'équation complexe Monge-Ampère dégénérée, il est démontré que la différence entre la borne supérieure et la borne inférieure de la solution est sous contrôle, et ainsi pour le gradient de la solution. Le Laplacien de la solution est également bornée. Cette borne du Laplacien est une amélioration de ce qui a été établi dans la littérature jusqu'à présent, mais par contre, l'argument tient seulement sous la condition que la variété a une courbure non-négative. Les résultats sont appliqués à un problème de Dirichlet dans l'espace complexe. L'existence et l'unicité d'une solution pluri-subharmonique de l'équation complexe Monge-Ampère dégénérée dans un domaine contenu dans l'espace complexe est démontré.
Brinkschulte, Judith. « The Cauchy-Riemann equation with support conditions on domains with Levi-degenerate boundaries ». Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2002. http://dx.doi.org/10.18452/14734.
Texte intégralIn a first part, we consider a domain Omega with Lipschitz boundary, which is relatively compact in an n-dimensional Kaehler manifold and satisfies some "log delta-pseudoconvexity" condition. We show that the Cauchy-Riemann equation with exact support in Omega admits a solution in bidegrees (p,q), 1 < q < n. Moreover, the range of the Cauchy-Riemann operator acting on smooth (p,n-1)-forms with exact support in Omega is closed. Applications are given to the solvability of the tangential Cauchy-Riemann equations for smooth forms and currents for all intermediate bidegrees on boundaries of weakly pseudoconvex domains in Stein manifolds and to the solvability of the tangential Cauchy-Riemann equations for currents on Levi-flat CR manifolds of arbitrary codimension. In a second part, we study the Cauchy-Riemann equation with zero Cauchy data along a hypersurface with constant signature. Applications to the solvability of the tangential Cauchy-Riemann equations for smooth forms with compact support and currents on the hypersurface are given. We also prove that the Hartogs phenomenon holds in weakly 2-convex-concave hypersurfaces with constant signature of Stein manifolds.
Watling, K. D. « Formulae for solutions to (possibly degenerate) diffusion equations exhibiting semi-classical and small time asymptotics ». Thesis, University of Warwick, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.380277.
Texte intégralROCCHETTI, DARIO. « Generation of analytic semigroups for a class of degenerate elliptic operators ». Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2009. http://hdl.handle.net/2108/749.
Texte intégralThis thesis is composed by two chapters. The first one is devoted to the generation of analytic semigroups in the L^2 topology by second order elliptic operators in divergence form, that may degenerate at the boundary of the space domain. Our results, that hold in two space dimension, guarantee that the solutions of the corresponding evolution problems support integration by parts. So, this paper provides the basis for deriving Carleman type estimates for degenerate parabolic operators. In the second chapter we give null controllability results for some degenerate parabolic equations in non divergence form with a drift term in one space dimension. In particular, the coefficient of the second order term may degenerate at the extreme points of the space domain. For this purpose, we obtain an observability inequality for the adjoint problem using suitable Carleman estimates.
Rao, Arvind Satya. « Weak solutions to a Monge-Ampère type equation on Kähler surfaces ». Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/582.
Texte intégralBoiger, Wolfgang Josef. « Stabilised finite element approximation for degenerate convex minimisation problems ». Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2013. http://dx.doi.org/10.18452/16790.
Texte intégralInfimising sequences of nonconvex variational problems often do not converge strongly in Sobolev spaces due to fine oscillations. These oscillations are physically meaningful; finite element approximations, however, fail to resolve them in general. Relaxation methods replace the nonconvex energy with its (semi)convex hull. This leads to a macroscopic model which is degenerate in the sense that it is not strictly convex and possibly admits multiple minimisers. The lack of control on the primal variable leads to difficulties in the a priori and a posteriori finite element error analysis, such as the reliability-efficiency gap and no strong convergence. To overcome these difficulties, stabilisation techniques add a discrete positive definite term to the relaxed energy. Bartels et al. (IFB, 2004) apply stabilisation to two-dimensional problems and thereby prove strong convergence of gradients. This result is restricted to smooth solutions and quasi-uniform meshes, which prohibit adaptive mesh refinements. This thesis concerns a modified stabilisation term and proves convergence of the stress and, for smooth solutions, strong convergence of gradients, even on unstructured meshes. Furthermore, the thesis derives the so-called flux error estimator and proves its reliability and efficiency. For interface problems with piecewise smooth solutions, a refined version of this error estimator is developed, which provides control of the error of the primal variable and its gradient and thus yields strong convergence of gradients. The refined error estimator converges faster than the flux error estimator and therefore narrows the reliability-efficiency gap. Numerical experiments with five benchmark examples from computational microstructure and topology optimisation complement and confirm the theoretical results.
Čakaitė, Inga. « Dalinių išvestinių sistemos su kvazireguliariuoju išsigimimu sprendimas ». Master's thesis, Lithuanian Academic Libraries Network (LABT), 2006. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2006~D_20060609_122917-49917.
Texte intégralMumcu, Gokhan. « EM Characterization of Magnetic Photonic / Degenerate Band Edge Crystals and Related Antenna Realizations ». Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1221860344.
Texte intégralCivin, Damon. « Stability of charged rotating black holes for linear scalar perturbations ». Thesis, University of Cambridge, 2015. https://www.repository.cam.ac.uk/handle/1810/247397.
Texte intégralBredies, Kristian. « Optimal control of degenerate parabolic equations in image processing analysis of evolution equations with variable degeneracy and associated minimization problems ». Berlin Logos-Verl, 2007. http://d-nb.info/987598511/04.
Texte intégralBredies, Kristian. « Optimal control of degenerate parabolic equations in image processing : analysis of evolution equations with variable degeneracy and associated minimization problems / ». Berlin : Logos-Verl, 2008. http://deposit.d-nb.de/cgi-bin/dokserv?id=3071675&prov=M&dok_var=1&dok_ext=htm.
Texte intégralMoyano, Garcia Iván. « Controllability of of some kinetic equations, of parabolic degenerated equations and of the Schrödinger equation via domain transformation ». Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX062/document.
Texte intégralThis memoir presents the results obtained during my PhD, whose goal is the study of the controllability of some Partial Differential Equations.The first part of this thesis is concerned with the study of the controllability of some kinetic equations undergoing different regimes. Under a collisional regime, we study the controllability of the Kolmogorov equation, a particular case of kinetic Fokker-Planck equation, in the phase space $R^d times R^d$. We obtain the null-controllability of this equation thanks to the use of a spectral inequality associated to the Laplace operator in the whole space. Under a non-collisional regime, we study the controllability of two fluid-kinetic models, the Vlasov-Stokes system and the Vlasov-Navier-Stokes system, which exhibe nonlinearities due to the coupling terms. In those cases, the strategy relies on the Return method.In the second part, we study the controllability of a family of 1-D degenerate parabolic equations by the flatness method, which allows the construction of explicit controls.The third part is focused on the problem of the controllability of the Schrödinger equation via domain deformations, i.e., using the domain as a control. We obtain a result of this kind in the case of the two-dimensional unit disk, for radial data. Our methods are based on a local exact controllability result around a certain trajectory, obtained thanks to the Inverse Mapping theorem
Figalli, Alessio. « Optimal transportation and action-minimizing measures ». Doctoral thesis, Scuola Normale Superiore, 2007. http://hdl.handle.net/11384/85683.
Texte intégralHofmanová, Martina. « Degenerate parabolic stochastic partial differential equations ». Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2013. http://tel.archives-ouvertes.fr/tel-00916580.
Texte intégralDekkers, Sophia Antonia Janna. « Degenerate parabolic equations on Riemannanian manifolds ». Thesis, Imperial College London, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.405755.
Texte intégralMARINO, LORENZO. « Regolarizzazione debole attraverso rumore di Lévy degenere e sue applicazioni ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/330542.
Texte intégralAfter a general introduction about the regularization by noise phenomenon in the degenerate setting, the first part of this thesis focuses at establishing the Schauder estimates, a useful analytical tool to prove also the well-posedness of stochastic differential equations (SDEs), for two different classes of Kolmogorov equations under a weak Hörmander-like condition, whose coefficients lie in suitable anisotropic Hölder spaces with multi-indices of regularity. The first class considers a nonlinear system controlled by a symmetric ⍺-stable operator acting only on some components. Our method of proof relies on a perturbative approach based on forward parametrix expansions through Duhamel-type formulas. Due to the low regularizing properties given by the degenerate setting, we also exploit some controls on Besov norms, in order to deal with the non-linear perturbation. As an extension of the first one, we also present Schauder estimates associated with a degenerate Ornstein-Uhlenbeck operator driven by a larger class of ⍺-stable-like operators, like the relativistic or the Lamperti stable one. The proof of this result relies instead on a precise analysis of the behaviour of the associated Markov semigroup between anisotropic Hölder spaces and some interpolation techniques. Exploiting a backward parametrix approach, the second part of this thesis aims at establishing the well-posedness in a weak sense of a degenerate chain of SDEs driven by the same class of ⍺-stable-like processes, under the assumptions of the minimal Hölder regularity on the coefficients. As a by-product of our method, we also present Krylov-type estimates of independent interest for the associated canonical process. Finally, we emphasize through suitable counter-examples that there exists indeed an (almost) sharp threshold on the regularity exponents ensuring the weak well-posedness for the SDE. In connection with some mechanical applications for kinetic dynamics with friction, we conclude by investigating the stability of second-order perturbations for degenerate Kolmogorov operators in Lp and Hölder norms.
Zhang, Zhou Ph D. Massachusetts Institute of Technology. « Degenerate Monge-Ampere equations over projective manifolds ». Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/34685.
Texte intégralThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 253-257).
In this thesis, we study degenerate Monge-Ampere equations over projective manifolds. The main degeneration is on the cohomology class which is Kähler in classic cases. Our main results concern the case when this class is semi-ample and big with certain generalization to more general cases. Two kinds of arguments are applied to study this problem. One is maximum principle type of argument. The other one makes use of pluripotential theory. So this article mainly consists of three parts. In the first two parts, we apply these two kinds of arguments separately and get some results. In the last part, we try to combine the results and arguments to achieve better understanding about interesting geometric objects. Some interesting problems are also mentioned in the last part for future consideration. The generalization of classic pluripotential theory in the second part may be of some interest by itself.
by Zhou Zhang.
Ph.D.
Tepoyan, Liparit. « Degenerated operator equations of higher order ». Universität Potsdam, 2000. http://opus.kobv.de/ubp/volltexte/2008/2588/.
Texte intégralPereira, Liliana Angélica Costa Matos. « Approximation of degenerate partial differential equations arising in finance ». Doctoral thesis, Instituto Superior de Economia e Gestão, 2018. http://hdl.handle.net/10400.5/15849.
Texte intégralEsta dissertação estuda a discretização de equações diferenciais parciais degeneradas com aplicações às Finanças. Em particular, o problema de Cauchy para uma equação diferencial parcial linear de segunda ordem é discretizado nas variáveis espaciais para os casos de coeficientes limitados e ilimitados. A semi-discretização é considerada para a versão multidimensional da EDP e também para o caso particular de uma dimensão espacial. A aproximação à solução da EDP é obtida com recurso a métodos básicos de diferenças finitas em versões discretas de espaços de Sobolev e de Sobolev ponderados. São deduzidos resultados de existência e unicidade para a solução generalizada do problema semi-discretizado. Finalmente, é dada uma estimativa para a taxa de convergência da solução do problema semi-discretizado para a solução do problema exacto correspondente. São obtidos resultados mais fortes para o caso especial de uma dimensão no espaço.
This thesis focuses on the discretization of degenerate partial differential equa- tions arising in Finance. In particular, the Cauchy problem for a second order linear parabolic PDE is discretized in the spatial variables for both the bounded and unbounded coefficient cases. The semi-discretization is considered for the general multi-dimensional version of the PDE and also for the particular one-dimensional case. The approximation to the PDE problem solution is obtained by using basic finite difference methods in discrete Sobolev and weighted Sobolev spaces. Existence and uniqueness results for the generalized solution to the semi- discretized problem are deduced. Finally, we give an estimate for the rate of convergence of the solution of the semi-discretized problem to the solution of corresponding the exact problem. Stronger results are deduced for the special case of one dimension on space.
info:eu-repo/semantics/publishedVersion
Zhan, Yi. « Viscosity solutions of nonlinear degenerate parabolic equations and several applications ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ49931.pdf.
Texte intégralPang, Ho Cheung. « Analysis on stochastic anisotropic degenerate parabolic-hyperbolic mixed-type equations ». Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:4364a7ef-07fa-458a-bd59-3de79f092144.
Texte intégralMaizurna, Isna. « Semigroup methods for degenerate cauchy problems and stochastic evolution equations / ». Title page, abstract and contents only, 1999. http://web4.library.adelaide.edu.au/theses/09PH/09phm2328.pdf.
Texte intégralVoldman, Aleksandr. « Topological classification of non-degenerate quadratic system ». CSUSB ScholarWorks, 1996. https://scholarworks.lib.csusb.edu/etd-project/1192.
Texte intégralGötmark, Elin, et Kaj Nyström. « Boundary behaviour of non-negative solutions to degenerate sub-elliptic equations ». Uppsala universitet, Analys och tillämpad matematik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-164532.
Texte intégralSchneider, Mathias. « Finite element approximation of some degenerate/singular elliptic and parabolic equations ». Thesis, Imperial College London, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.265861.
Texte intégralSaÌnchez, Garduño Faustino. « Travelling waves in one-dimensional degenerate non-linear reaction-diffussion equations ». Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334929.
Texte intégralAgueh, Martial Marie-Paul. « Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory ». Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/29180.
Texte intégralAbedin, Farhan. « Harnack Inequality for a class of Degenerate Elliptic Equations in Non-Divergence Form ». Diss., Temple University Libraries, 2018. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/523174.
Texte intégralPh.D.
We provide two proofs of an invariant Harnack inequality in small balls for a class of second order elliptic operators in non-divergence form, structured on Heisenberg vector fields. We assume that the coefficient matrix is uniformly positive definite, continuous, and symplectic. The first proof emulates a method of E. M. Landis, and is based on the so-called growth lemma, which establishes a quantitative decay of oscillation for subsolutions. The second proof consists in establishing a critical density property for non-negative supersolutions, and then invoking the axiomatic approach developed by Di Fazio, Gutiérrez and Lanconelli to obtain Harnack’s inequality.
Temple University--Theses
CIBELLI, Gennaro. « Sharp Estimates for Fundamental Solutions of some degenerate Kolmogorov equations arising in Finance ». Doctoral thesis, Università degli studi di Ferrara, 2017. http://hdl.handle.net/11392/2488066.
Texte intégralLa tesi è dedicata allo studio di una equazione differenziale alle derivate parziali parabolica degenere che interviene in modelli per il pricing di Opzioni asiatiche a media aritmetica in Finanza nel setting introdotto da Black, Scholes e Merton. Lo scopo del lavoro è quello di ricavare stime ottimali per la soluzione fondamentale del relativo operatore. L'interesse in questo risultato risiede nel fatto che un' espressione della soluzione fondamentale non è disponibile, mentre informazioni esplicite sul suo comportamento asintotico sono fornite nel lavoro di Tesi. Il problema di dimostrare stime ottimali dall'alto e dal basso per la soluzione fondamentale di un operatore di evoluzione del secondo ordine ha lunga storia ed è stato considerato da molti autori nello studio delle PDE's. La metodologia utilizzata coinvonlge diverse tecniche appartenenti all' Analisi Matematica, Processi stocastici e Teoria del controllo ottimo e può essere applicata a diversi problemi. In particolare, la prova del limite inferiore si basa sulla ripetuta applicazione della disuguaglianza di Harnack per soluzioni positive lungo un'opportuna catena di punti, combinata con una procedura di ottimizzazione. Tale procedura ci conduce a considerare naturalmente un problema di controllo ottimo che sarà risolto in modo esplicito. Per il limite superiore, si combinano alcuni risultati di PDE con strumenti elementari appartenenti alla teoria del controllo ottimo. In particolare, si usano risultati analoghi all' iterazione Moser e l'equazione di Hamilton-Jacobi-Bellman per la funzione valore relativo ad un pertinente problema di controllo ottimo.
Iwaki, Kohei. « On WKB theoretic transformations for Painleve transcendents on degenerate Stokes segments ». 京都大学 (Kyoto University), 2014. http://hdl.handle.net/2433/188457.
Texte intégralPesce, Antonello. « Stochastic fundamental solutions for a class of degenerate SPDEs ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14559/.
Texte intégralChen, Hua, et Ke Li. « The existence and regularity of multiple solutions for a class of infinitely degenerate elliptic equations ». Universität Potsdam, 2007. http://opus.kobv.de/ubp/volltexte/2009/3024/.
Texte intégralAlhojilan, Yazid Yousef M. « Higher-order numerical scheme for solving stochastic differential equations ». Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/15973.
Texte intégralFigalli, Alessio. « Optimal transportation and action-minimizing measures ». Doctoral thesis, Lyon, École normale supérieure (sciences), 2007. http://www.theses.fr/2007ENSL0422.
Texte intégralLucertini, Giacomo. « Parametrix technique for a class of degenerate parabolic operators with measurable coefficients under the weak Hörmander condition ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Trouver le texte intégralMORALES, DANIA GONZALEZ. « TWO TOPICS IN DEGENERATE ELLIPTIC EQUATIONS INVOLVING A GRADIENT TERM : EXISTENCE OF SOLUTIONS AND A PRIORI ESTIMATES ». PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2018. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=36440@1.
Texte intégralCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO
PROGRAMA DE EXCELENCIA ACADEMICA
Esta tese tem o intuito do estudo da existência, não existência e estimativas a priori de soluções não negativas de alguns tipos de problemas elípticos degenerados coercivos e não coercivos com um termo adicional dependendo do gradiente. Dentre outras coisas, obtemos condições integrais generalizadas tipo Keller-Osserman para a existência e não existência de soluções. Também mostramos que condições adicionais e diferentes são necessárias quando p é maior ou igual à 2 ou p é menor ou igual à 2, devido ao caráter degenerado do operador. As estimativas a priori são obtidas para super-soluções e soluções de EDPs elípticas superlineares o sistemas de tais tipos de equações em forma divergente com diferentes operadores e não linearidades. Além do mais, obtemos extensões até a fronteira de algumas desigualdades de Harnack fracas e lemas quantitativos de Hopf para operadores elípticos como o p-Laplaciano.
This thesis concerns the study of existence, nonexistence and a priori estimates of nonnegative solutions of some types of degenerate coercive and non coercive elliptic problems involving an additional term which depends on the gradient. Among other things, we obtain generalized integral conditions of Keller-Osserman type for the existence and nonexistence of solutions. Also, we show that different conditions are needed when p is higher or equal to 2 or p is less than or equal to 2, due to the degeneracy of the operator. The uniform a priori estimates are obtained for supersolutions and solutions of superlinear elliptic PDE or systems of such PDE in divergence form that can contain different operators and nonlinearities. We also give full boundary extensions to some half Harnack inequalities and quantitative Hopf lemmas, for degenerate elliptic operators like the p-Laplacian.
Floridia, Giuseppe. « Approximate multiplicative controllability for degenerate parabolic problems and regularity properties of elliptic and parabolic systems ». Doctoral thesis, Università di Catania, 2012. http://hdl.handle.net/10761/1051.
Texte intégralTarhini, Rana. « Équation de films minces fractionnaire pour les fractures hydrauliques ». Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC1061/document.
Texte intégralIn this thesis, we study two degenerate, non-local parabolic equations, a fractional thin film equation and a fractional porous medium equation. The introduction contains a presentation of problems, the previous results in the literature and a brief presentation of our results. In the second chapter, we present a short overview of the De Giorgi method used to prove Hölder regularity of solutions of elliptic equations. Moreover, we present the results using this approach in the local and non-local parabolic cases. In the third chapter we prove existence of weak solutions of a fractional thin film equation. It is a non-local degenerate parabolic equation of order $alpha + 2$ where $0 < alpha < 2$. It is a generalization of an equation studied by Imbert and Mellet in 2011 for $alpha = 1$. To construct these solutions, we consider a regularized problem then we pass to the limit using Sobolev embedding theorem, that's why we distinguish two cases $0 < alpha < 1$ and $1 leq alpha < 2$. We also prove that the solution is positive if the initial condition is so. The fourth chapter is dedicated for a fractional porous medium equation. We prove Hölder regularity of positive weak solutions satisfying energy estimates. First, we prove the existence of weak solutions that satisfy energy estimates. We distiguish two cases $0 < alpha < 1$ and $1 leq alpha < 2$ because of divergence problems. The we prove De Giorgi Lemmas about oscillation reduction from above and from below. This is not suffisant. We need to improve the lemma about oscillation reduction from above. So we pass by an intermediate values lemma and we prove an improved oscillation reduction lemma from above. Finally, we prove Hölder regularity of solutions using the scaling property
Krüger, Matthias [Verfasser], Ingo [Akademischer Betreuer] Witt, Ingo [Gutachter] Witt et Dorothea [Gutachter] Bahns. « On the Cauchy problem for a class of degenerate hyperbolic equations / Matthias Krüger ; Gutachter : Ingo Witt, Dorothea Bahns ; Betreuer : Ingo Witt ». Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2018. http://d-nb.info/1166399818/34.
Texte intégralLeobacher, Gunther, et Michaela Szölgyenyi. « Convergence of the Euler-Maruyama method for multidimensional SDEs with discontinuous drift and degenerate diffusion coefficient ». Springer Nature, 2018. http://dx.doi.org/10.1007/s00211-017-0903-9.
Texte intégralDe, Zan Cecilia. « Some new results on reaction-diffusion equations and geometric flows ». Doctoral thesis, Università degli studi di Padova, 2012. http://hdl.handle.net/11577/3422529.
Texte intégralIn questa tesi discutiamo il comportamento asintotico delle soluzioni di equazioni di reazione-diffusione nel dominio illimitato Rn × (0,+∞) nei casi in cui tale comportamento sia descritto da un’interfaccia in movimento. Come primo tipo di problemi asintotici consideriamo il limite singolare di equazioni di reazione-diffusione bistabili nel caso in cui la velocità dell’onda viaggiante dipenda dalla variabile di stato, cioè cε = cε(x), e sia soddisfatto, al tendere di ε a zero e in qualche modo opportuno, cε/ετ → α, laddove α è una funzione discontinua e τ è un intero che può essere uguale a 0 o a 1. La seconda parte della tesi riguarda equazioni di reazione-diffusione semilineari e aventi termini di diffusione del tipo tr(Aε(x)D2uε), laddove tr denota l’operatore traccia, Aε = σεσtε per qualche funzione σε : Rn → Rn×(m+n) e Aε converge ad una matrice degenere. Al fine di provare tali risultati in modo rigoroso, abbiamo modificato e adattato "l’approccio geometrico" introdotto da G. Barles e P. E. Souganidis per risolvere problemi in Rn e in seguito parzialmente rivisto dallo stesso G. Barles assieme a F. Da Lio per equazioni di reazione-diffusione in domini limitati. Laddove possibile abbiamo sempre considerato la questione della buona posizione dei problemi di Cauchy che governano il moto dei fronti che descrivono le asintotiche da noi considerate
Liu, Weian, Yin Yang et Gang Lu. « Viscosity solutions of fully nonlinear parabolic systems ». Universität Potsdam, 2002. http://opus.kobv.de/ubp/volltexte/2008/2621/.
Texte intégralSande, Olow. « Boundary Estimates for Solutions to Parabolic Equations ». Doctoral thesis, Uppsala universitet, Matematiska institutionen, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-281451.
Texte intégralLeahy, James-Michael. « On parabolic stochastic integro-differential equations : existence, regularity and numerics ». Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/10569.
Texte intégralHall, Eric Joseph. « Accelerated numerical schemes for deterministic and stochastic partial differential equations of parabolic type ». Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8038.
Texte intégralŞanlı, Zafer Çöken Abdilkadir Ceylan. « Dejenere helisler üzerine / ». Isparta : SDÜ Fen Bilimleri Enstitüsü, 2009. http://tez.sdu.edu.tr/Tezler/TF01302.pdf.
Texte intégralStilgenbauer, Patrik [Verfasser]. « The Stochastic Analysis of Fiber Lay-Down Models : An Interplay between Pure and Applied Mathematics involving Langevin Processes on Manifolds, Ergodicity for Degenerate Kolmogorov Equations and Hypocoercivity [[Elektronische Ressource]] / Patrik Stilgenbauer ». München : Verlag Dr. Hut, 2014. http://d-nb.info/1050331729/34.
Texte intégralBrenner, Konstantin. « Méthodes de volumes finis sur maillages quelconques pour des systèmes d'évolution non linéaires ». Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00647336.
Texte intégral