Littérature scientifique sur le sujet « Defect textures »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Defect textures ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Defect textures"
Zhou, Lei, Bingya Ma, Yanyan Dong, Zhewen Yin et Fan Lu. « DCFE-YOLO : A novel fabric defect detection method ». PLOS ONE 20, no 1 (14 janvier 2025) : e0314525. https://doi.org/10.1371/journal.pone.0314525.
Texte intégralCarrilho, Rui, Kailash A. Hambarde et Hugo Proença. « A Novel Dataset for Fabric Defect Detection : Bridging Gaps in Anomaly Detection ». Applied Sciences 14, no 12 (19 juin 2024) : 5298. http://dx.doi.org/10.3390/app14125298.
Texte intégralZhang, Yuming, Zhongyuan Gao, Chao Zhi, Mengqi Chen, Youyong Zhou, Shuai Wang, Sida Fu et Lingjie Yu. « A novel defect generation model based on two-stage GAN ». e-Polymers 22, no 1 (1 janvier 2022) : 793–802. http://dx.doi.org/10.1515/epoly-2022-0071.
Texte intégralShi, Hui, Gangyan Li et Hanwei Bao. « Lightweight Reconstruction Network for Surface Defect Detection Based on Texture Complexity Analysis ». Electronics 12, no 17 (27 août 2023) : 3617. http://dx.doi.org/10.3390/electronics12173617.
Texte intégralLi, Feng, Lina Yuan, Kun Zhang et Wenqing Li. « A defect detection method for unpatterned fabric based on multidirectional binary patterns and the gray-level co-occurrence matrix ». Textile Research Journal 90, no 7-8 (1 octobre 2019) : 776–96. http://dx.doi.org/10.1177/0040517519879904.
Texte intégralMo, Dongmei, et Wai Keung Wong. « Fabric Defect Classification based on Deep Hashing Learning ». AATCC Journal of Research 8, no 1_suppl (septembre 2021) : 191–201. http://dx.doi.org/10.14504/ajr.8.s1.23.
Texte intégralLi, Jianqi, Binfang Cao, Fangyan Nie et Minhan Zhu. « Feature Extraction of Foam Nickel Surface Based on Multi-Scale Texture Analysis ». Journal of Advanced Computational Intelligence and Intelligent Informatics 23, no 2 (20 mars 2019) : 175–82. http://dx.doi.org/10.20965/jaciii.2019.p0175.
Texte intégralLiu, Yang, et Weiqi Yuan. « A Distributed System-Based Multiplex Networks to Extract Texture Feature ». International Journal of Distributed Systems and Technologies 13, no 3 (1 juillet 2022) : 1–11. http://dx.doi.org/10.4018/ijdst.307991.
Texte intégralZhang, Huanhuan, Jinxiu Ma, Junfeng Jing et Pengfei Li. « Fabric Defect Detection Using L0 Gradient Minimization and Fuzzy C-Means ». Applied Sciences 9, no 17 (26 août 2019) : 3506. http://dx.doi.org/10.3390/app9173506.
Texte intégralSong, K. Y., J. Kittler et M. Petrou. « Defect detection in random colour textures ». Image and Vision Computing 14, no 9 (octobre 1996) : 667–83. http://dx.doi.org/10.1016/0262-8856(96)84491-x.
Texte intégralThèses sur le sujet "Defect textures"
Xie, Xianghua. « Defect detection in random colour textures ». Thesis, University of Bristol, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.425096.
Texte intégralAfghah, Seyedeh Sajedeh. « MODELING SKYRMIONS, DEFECT TEXTURES, AND ELECTRICAL SWITCHINGIN LIQUID CRYSTALS ». Kent State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=kent1532952208004472.
Texte intégralMahyaoui, Camille. « Exploitation des textures de phases cristal-liquides pour diverses applications optiques ». Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP118.
Texte intégralLiquid crystals have been used for their electro-optical properties since the 1970s, both in LCD screens and for less widespread applications such as smart glass. The glass industry is particularly interested in the latter. The technology currently on the market uses a polymer matrix in which droplets of liquid crystal in the nematic phase are dispersed. Under the effect of an electrical voltage, the glass switches from a scattering to a transparent state. However, the transparency of this second state is not optimal, which has prompted the search for other technical solutions. It has recently been shown that the smectic A phase can also be used to design a smart glass prototype: a type of topological defect (focal conic domains) is generated in the smectic A phase and polymerised to be maintained in the nematic phase. Thanks to this step, the sample reversibly changes from a scattering state to a transparent state when a voltage is applied. This system belongs to the family of PSLCs (Polymer Stabilised Liquid Crystals). In this thesis, we optimised the polymerisation parameters (monomer concentration, photoinitiator, UV light intensity) to maximise the contrast between the transparent and scattering states. The relationship between the electro-optical properties and the microstructure of the samples was also studied. The principle was then extended to another liquid crystal phase that is formally very close to the smectic A phase: the twist-bend nematic (NTB) phase. This phase exhibits a wide variety of topological defects, enabling us not only to show that the NTB phase can also be used for smart glass applications, but also to develop an electrically tunable diffraction grating. For the latter application, the ‘rope-like texture' of the NTB phase was polymerised to be maintained in the nematic phase, which is known to align reversibly along the electric field. We then revisited the smectic A phase, which has already been extensively studied, but whose properties have not yet been fully investigated. In particular, we sought to make use of the quasi-hexagonal lattice of focal conic domains that is obtained by simple spin-coating deposition. We have shown that this lattice can be used to confine nanoparticles (3 nm - 10 nm). The method works for several types of nanoparticles (gold, quantum dots). An in-depth study of the aggregation state of nanoparticles and their location in the liquid crystal matrix was carried out. Two populations of nanoparticles were identified: micrometre-sized aggregates floating on the surface of the liquid crystal and localised on the defects, and nanoparticles adsorbed on the substrate. An evolution in the distribution of adsorbed particles was observed over long periods: a honeycomb lattice appeared in a few months. Finally, the optical properties of the two types of defects observed in the smectic A phase under hybrid anchoring conditions were studied: focal conic domains (which appear in samples thicker than 1.5 µm) and ‘linear defects' (observed in samples thinner than 1.5 µm). The focal conic domains scatter light and give the sample a hazy appearance, while the linear defects diffract visible light, giving the sample a structural colour. We have shown that the scattering properties of the focal conics are enhanced the thicker the liquid crystal layer, and that the linear defects behave as a diffraction grating. The structure of these two types of defects was studied using optical microscopy. A model based on Dupin's cyclides was proposed for focal conic domains. The structure of linear defects has not yet been fully elucidated
Song, Keng Yew. « Surface defect detection on textured background ». Thesis, University of Surrey, 1993. http://epubs.surrey.ac.uk/844113/.
Texte intégralPathak, Ajay Kumar. « Automated defect detection in textured materials ». Thesis, Hong Kong : University of Hong Kong, 2001. http://sunzi.lib.hku.hk/hkuto/record.jsp?B23295168.
Texte intégralNgan, Yuk-tung Henry. « Motif-based method for patterned texture defect detection ». Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/b40203608.
Texte intégralNgan, Yuk-tung Henry, et 顏旭東. « Motif-based method for patterned texture defect detection ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B40203608.
Texte intégralNgan, Yuk-tung Henry, et 顏旭東. « Patterned Jacquard fabric defect detection ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B30070880.
Texte intégralPiepmeier, Jenelle Armstrong. « Textural analysis for defect detection in automated inspection systems ». Thesis, Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/19108.
Texte intégralBarrett, Heather A. « A COMPARATIVE TRANSMISSION ELECTRON MICROSCOPY INVESTIGATION OF DEFECTS AND TEXTURES IN CRYPTOMELANE ». Miami University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=miami1375787636.
Texte intégralLivres sur le sujet "Defect textures"
National Seminar on the Application of Textures in Materials Research (1st 1997 Hyderabad, India). Textures in materials research : Proceedings of the First National Seminar on the Application of Textures in Materials Research (NASAT-97) held in [sic] Dec. 4-5, 1997 at the Defence Metallurgical Research Laboratory, Hyderabad (India). Enfield, N.H : Science Publishers, 1999.
Trouver le texte intégralShields, David Dwayne. Recent attempts to defend the Byzantine text of the Greek New Testament. Ann Arbor, MI : University Microfilms International, 2000.
Trouver le texte intégralShields, David Dwayne. Recent attempts to defend the Byzantine text of the Greek New Testament [microform]. Ann Arbor, MI : University Microfilms International, 1986.
Trouver le texte intégralPurushothama, B., et H. V. Sreenivasamurthy. Texturising : Defects, Causes, Effects, Remedies and Prevention Through Quality Management. Woodhead Publishing India PVT. LTD, 2018.
Trouver le texte intégralPurushothama, B., et H. V. Sreenivasamurthy. Texturising : Defects, Causes, Effects, Remedies and Prevention Through Quality Management. Woodhead Publishing India PVT. LTD, 2018.
Trouver le texte intégralTaylor-Jones, Kate. Rhythm, Texture, Moods. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190254971.003.0013.
Texte intégralWickham, Chris. Sleepwalking into a New World. Princeton University Press, 2018. http://dx.doi.org/10.23943/princeton/9780691181141.001.0001.
Texte intégralChapitres de livres sur le sujet "Defect textures"
Xie, Xianghua, et Majid Mirmehdi. « Texture Exemplars for Defect Detection on Random Textures ». Dans Pattern Recognition and Image Analysis, 404–13. Berlin, Heidelberg : Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11552499_46.
Texte intégralGoodby, J. W. « Introduction to Defect Textures in Liquid Crystals ». Dans Handbook of Visual Display Technology, 1897–924. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-14346-0_82.
Texte intégralGoodby, J. W. « Introduction to Defect Textures in Liquid Crystals ». Dans Handbook of Visual Display Technology, 1–23. Berlin, Heidelberg : Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-35947-7_82-2.
Texte intégralGoodby, J. W. « Introduction to Defect Textures in Liquid Crystals ». Dans Handbook of Visual Display Technology, 1289–314. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-79567-4_82.
Texte intégralLópez, Fernando, José Manuel Prats, Alberto Ferrer et José Miguel Valiente. « Defect Detection in Random Colour Textures Using the MIA T2 Defect Maps ». Dans Lecture Notes in Computer Science, 752–63. Berlin, Heidelberg : Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11867661_68.
Texte intégralSiegmund, Dirk, Ashok Prajapati, Florian Kirchbuchner et Arjan Kuijper. « An Integrated Deep Neural Network for Defect Detection in Dynamic Textile Textures ». Dans Progress in Artificial Intelligence and Pattern Recognition, 77–84. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01132-1_9.
Texte intégralSchael, Marc. « Texture Defect Detection Using Invariant Textural Features ». Dans Lecture Notes in Computer Science, 17–24. Berlin, Heidelberg : Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45404-7_3.
Texte intégralChetverikov, Dmitry, et Krisztián Gede. « Textures and structural defects ». Dans Computer Analysis of Images and Patterns, 167–74. Berlin, Heidelberg : Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/3-540-63460-6_114.
Texte intégralSingh, Shri. « Defects and Textures in Liquid Crystals ». Dans Handbook of Liquid Crystals—Volume II, 285–389. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-52621-3_6.
Texte intégralLv, Ying, Xiaodong Yue, Qiang Chen et Meiqian Wang. « Fabric Defect Detection with Cartoon–Texture Decomposition ». Dans Artificial Intelligence on Fashion and Textiles, 277–83. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99695-0_33.
Texte intégralActes de conférences sur le sujet "Defect textures"
Akter, Tanjila, Abu Salaho As Samman, Anamika Hossain Lily, Md Sadekur Rahman, Nuzhat Noor Islam Prova et Md Imran Kabir Joy. « Deep Learning Approaches for Multi Class Leather Texture Defect Classifcation ». Dans 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/icccnt61001.2024.10725952.
Texte intégralWan, Jingyan, Changsheng Zhou et Xu Zhao. « Self-Supervised Fast Texture Defect Detection Based on Salient Object Detection ». Dans 2024 IEEE International Conference on Real-time Computing and Robotics (RCAR), 558–63. IEEE, 2024. http://dx.doi.org/10.1109/rcar61438.2024.10671027.
Texte intégralWang, Haiwen, Charles C. Wojcik et Shanhui Fan. « Topological defects and textures of photonic spin ». Dans CLEO : Fundamental Science. Washington, D.C. : Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_fs.2023.fth3c.6.
Texte intégralMirmahdavi, S. A., A. Ahmadyfard, A. A. Shahraki et P. Khojasteh. « A Novel Modeling of Random Textures Using Fourier Transform for Defect Detection ». Dans 2013 UKSim 15th International Conference on Computer Modelling and Simulation (UKSim 2013). IEEE, 2013. http://dx.doi.org/10.1109/uksim.2013.95.
Texte intégralRalló, Miquel, María S. Millán et Jaume Escofet. « Unsupervised local defect segmentation in textures using Gabor filters : application to industrial inspection ». Dans SPIE Optical Engineering + Applications, sous la direction de Andrew G. Tescher. SPIE, 2009. http://dx.doi.org/10.1117/12.826157.
Texte intégralSkripkina, D. V., et A. V. Levitin. « Comparative Analysis of One-class and Two-class Support Vector Machines for Detecting Textural Anomalies in Leather Images ». Dans 33rd International Conference on Computer Graphics and Vision. Keldysh Institute of Applied Mathematics, 2023. http://dx.doi.org/10.20948/graphicon-2023-503-508.
Texte intégralTang, S. H., et S. Wu. « Deformation-Induced Microstructure Effects on Ultrasonic Waves : Simple Shear Versus Pure Shear ». Dans ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/pvp2006-icpvt-11-93131.
Texte intégralTout, karim, et patrick Bouteille. « Defect detection on inductive thermography images using convolutional neural networks ». Dans 16th Quantitative InfraRed Thermography conference. QIRT Council, 2022. http://dx.doi.org/10.21611/qirt.2022.3037.
Texte intégralSchwarzer, Heiko, et Stephan Teiwes. « Detection and classification of structural defects on textured surfaces ». Dans Optics in Computing. Washington, D.C. : Optica Publishing Group, 1997. http://dx.doi.org/10.1364/oc.1997.jwa.5.
Texte intégralZhou, Hao, Yixin Chen, David Troendle et Byunghyun Jang. « One-Class Model for Fabric Defect Detection ». Dans 10th International Conference on Natural Language Processing (NLP 2021). Academy and Industry Research Collaboration Center (AIRCC), 2021. http://dx.doi.org/10.5121/csit.2021.112314.
Texte intégralRapports d'organisations sur le sujet "Defect textures"
Baete, Christophe. PR-405-153600-R01 Validation of the AC Corrosion Criteria Based on Real-World Pipeline Measurements. Chantilly, Virginia : Pipeline Research Council International, Inc. (PRCI), mai 2019. http://dx.doi.org/10.55274/r0011592.
Texte intégralShomer, Ilan, Ruth E. Stark, Victor Gaba et James D. Batteas. Understanding the hardening syndrome of potato (Solanum tuberosum L.) tuber tissue to eliminate textural defects in fresh and fresh-peeled/cut products. United States Department of Agriculture, novembre 2002. http://dx.doi.org/10.32747/2002.7587238.bard.
Texte intégralSwan, Megan, et Christopher Calvo. Site characterization and change over time in semi-arid grassland and shrublands at three parks?Chaco Culture National Historic Park, Petrified Forest National Park, and Wupatki National Monument : Upland vegetation and soils monitoring 2007?2021. National Park Service, 2024. http://dx.doi.org/10.36967/2301582.
Texte intégral