Littérature scientifique sur le sujet « Deepfake Detection »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Deepfake Detection ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Deepfake Detection"
Yasrab, Robail, Wanqi Jiang et Adnan Riaz. « Fighting Deepfakes Using Body Language Analysis ». Forecasting 3, no 2 (28 avril 2021) : 303–21. http://dx.doi.org/10.3390/forecast3020020.
Texte intégralNiveditha, Zohaib Hasan Princy, Saurabh Sharma, Vishal Paranjape et Abhishek Singh. « Review of Deep Learning Techniques for Deepfake Image Detection ». International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering 11, no 02 (25 février 2022) : 1–14. http://dx.doi.org/10.15662/ijareeie.2022.1102021.
Texte intégralSunkari, Venkateswarlu, et Ayyagari Sri Nagesh. « Artificial intelligence for deepfake detection : systematic review and impact analysis ». IAES International Journal of Artificial Intelligence (IJ-AI) 13, no 4 (1 décembre 2024) : 3786. http://dx.doi.org/10.11591/ijai.v13.i4.pp3786-3792.
Texte intégralBattula Thirumaleshwari Devi, Et al. « A Comprehensive Survey on Deepfake Methods : Generation, Detection, and Applications ». International Journal on Recent and Innovation Trends in Computing and Communication 11, no 9 (30 octobre 2023) : 654–78. http://dx.doi.org/10.17762/ijritcc.v11i9.8857.
Texte intégralLad, Sumit. « Adversarial Approaches to Deepfake Detection : A Theoretical Framework for Robust Defense ». Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023 6, no 1 (21 septembre 2024) : 46–58. http://dx.doi.org/10.60087/jaigs.v6i1.225.
Texte intégralKrueger, Natalie, Mounika Vanamala et Rushit Dave. « Recent Advancements in the Field of Deepfake Detection ». International Journal of Computer Science and Information Technology 15, no 4 (27 août 2023) : 01–11. http://dx.doi.org/10.5121/ijcsit.2023.15401.
Texte intégralKawabe, Akihisa, Ryuto Haga, Yoichi Tomioka, Jungpil Shin et Yuichi Okuyama. « A Dynamic Ensemble Selection of Deepfake Detectors Specialized for Individual Face Parts ». Electronics 12, no 18 (18 septembre 2023) : 3932. http://dx.doi.org/10.3390/electronics12183932.
Texte intégralRaza, Ali, Kashif Munir et Mubarak Almutairi. « A Novel Deep Learning Approach for Deepfake Image Detection ». Applied Sciences 12, no 19 (29 septembre 2022) : 9820. http://dx.doi.org/10.3390/app12199820.
Texte intégralSingh, Preeti, Khyati Chaudhary, Gopal Chaudhary, Manju Khari et Bharat Rawal. « A Machine Learning Approach to Detecting Deepfake Videos : An Investigation of Feature Extraction Techniques ». Journal of Cybersecurity and Information Management 9, no 2 (2022) : 42–50. http://dx.doi.org/10.54216/jcim.090204.
Texte intégralQureshi, Shavez Mushtaq, Atif Saeed, Sultan H. Almotiri, Farooq Ahmad et Mohammed A. Al Ghamdi. « Deepfake forensics : a survey of digital forensic methods for multimodal deepfake identification on social media ». PeerJ Computer Science 10 (27 mai 2024) : e2037. http://dx.doi.org/10.7717/peerj-cs.2037.
Texte intégralThèses sur le sujet "Deepfake Detection"
Hasanaj, Enis, Albert Aveler et William Söder. « Cooperative edge deepfake detection ». Thesis, Jönköping University, JTH, Avdelningen för datateknik och informatik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-53790.
Texte intégralEmir, Alkazhami. « Facial Identity Embeddings for Deepfake Detection in Videos ». Thesis, Linköpings universitet, Datorseende, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-170587.
Texte intégralGUARNERA, LUCA. « Discovering Fingerprints for Deepfake Detection and Multimedia-Enhanced Forensic Investigations ». Doctoral thesis, Università degli studi di Catania, 2021. http://hdl.handle.net/20.500.11769/539620.
Texte intégralTak, Hemlata. « End-to-End Modeling for Speech Spoofing and Deepfake Detection ». Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS104.pdf.
Texte intégralVoice biometric systems are being used in various applications for secure user authentication using automatic speaker verification technology. However, these systems are vulnerable to spoofing attacks, which have become even more challenging with recent advances in artificial intelligence algorithms. There is hence a need for more robust, and efficient detection techniques. This thesis proposes novel detection algorithms which are designed to perform reliably in the face of the highest-quality attacks. The first contribution is a non-linear ensemble of sub-band classifiers each of which uses a Gaussian mixture model. Competitive results show that models which learn sub-band specific discriminative information can substantially outperform models trained on full-band signals. Given that deep neural networks are more powerful and can perform both feature extraction and classification, the second contribution is a RawNet2 model. It is an end-to-end (E2E) model which learns features directly from raw waveform. The third contribution includes the first use of graph neural networks (GNNs) with an attention mechanism to model the complex relationship between spoofing cues present in spectral and temporal domains. We propose an E2E spectro-temporal graph attention network called RawGAT-ST. RawGAT-ST model is further extended to an integrated spectro-temporal graph attention network, named AASIST which exploits the relationship between heterogeneous spectral and temporal graphs. Finally, this thesis proposes a novel data augmentation technique called RawBoost and uses a self-supervised, pre-trained speech model as a front-end to improve generalisation in the wild conditions
Moufidi, Abderrazzaq. « Machine Learning-Based Multimodal integration for Short Utterance-Based Biometrics Identification and Engagement Detection ». Electronic Thesis or Diss., Angers, 2024. http://www.theses.fr/2024ANGE0026.
Texte intégralThe rapid advancement and democratization of technology have led to an abundance of sensors. Consequently, the integration of these diverse modalities presents an advantage for numerous real-life applications, such as biometrics recognition and engage ment detection. In the field of multimodality, researchers have developed various fusion ar chitectures, ranging from early, hybrid, to late fusion approaches. However, these architec tures may have limitations involving short utterances and brief video segments, necessi tating a paradigm shift towards the development of multimodal machine learning techniques that promise precision and efficiency for short-duration data analysis. In this thesis, we lean on integration of multimodality to tackle these previous challenges ranging from supervised biometrics identification to unsupervised student engagement detection. This PhD began with the first contribution on the integration of multiscale Wavelet Scattering Transform with x-vectors architecture, through which we enhanced the accuracy of speaker identification in scenarios involving short utterances. Going through multimodality benefits, a late fusion architecture combining lips depth videos and audio signals further improved identification accuracy under short utterances, utilizing an effective and less computational methods to extract spatiotemporal features. In the realm of biometrics challenges, there is the threat emergence of deepfakes. There-fore, we focalized on elaborating a deepfake detection methods based on, shallow learning and a fine-tuned architecture of our previous late fusion architecture applied on RGB lips videos and audios. By employing hand-crafted anomaly detection methods for both audio and visual modalities, the study demonstrated robust detection capabilities across various datasets and conditions, emphasizing the importance of multimodal approaches in countering evolving deepfake techniques. Expanding to educational contexts, the dissertation explores multimodal student engagement detection in classrooms. Using low-cost sensors to capture Heart Rate signals and facial expressions, the study developed a reproducible dataset and pipeline for identifying significant moments, accounting for cultural nuances. The analysis of facial expressions using Vision Transformer (ViT) fused with heart rate signal processing, validated through expert observations, showcased the potential for real-time monitoring to enhance educational outcomes through timely interventions
Gardner, Angelica. « Stronger Together ? An Ensemble of CNNs for Deepfakes Detection ». Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-97643.
Texte intégralChang, Ching-Tang, et 張景棠. « Detecting Deepfake Videos with CNN and Image Partitioning ». Thesis, 2019. http://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/login?o=dnclcdr&s=id=%22107NCHU5394052%22.&searchmode=basic.
Texte intégral國立中興大學
資訊科學與工程學系所
107
The AIgenerated images are gradually similar to the pictures taken. When the generated images are used in inappropriate cases, it will cause damage to people’s rights and benefits. These doubtful images will cause illegal problems. The issue of detecting digital forgery has existed for many years. However, the fake images generated by the development of science and technology are more difficult to distinguish. Therefore, this thesis based on deep learning technology to detect the controversial face manipulation images. We proposed to segment the image block by block method and use CNN to train the features of each block separately. Finally, each feature is voted in an ensemble model to detect forgery images. Accurately, we recognize Faceswap, DeepFakes, and Face2Face with the dataset provided by FaceForensics++. Nowadays, classifiers require not only high accuracy but also the robustness of different datasets. Therefore, we train some data to test whether it is robust in other data. We collected digital forgeries generated by different methods on the videosharing platform to test the generalization of our model in detecting these forgeries.
SONI, ANKIT. « DETECTING DEEPFAKES USING HYBRID CNN-RNN MODEL ». Thesis, 2022. http://dspace.dtu.ac.in:8080/jspui/handle/repository/19168.
Texte intégralRASOOL, AALE. « DETECTING DEEPFAKES WITH MULTI-MODEL NEURAL NETWORKS : A TRANSFER LEARNING APPROACH ». Thesis, 2023. http://dspace.dtu.ac.in:8080/jspui/handle/repository/19993.
Texte intégralLivres sur le sujet "Deepfake Detection"
Abdul-Majeed, Ghassan H., Adriana Burlea-Schiopoiu, Parul Aggarwal et Ahmed J. Obaid. Handbook of Research on Advanced Practical Approaches to Deepfake Detection and Applications. IGI Global, 2022.
Trouver le texte intégralAbdul-Majeed, Ghassan H., Adriana Burlea-Schiopoiu, Parul Aggarwal et Ahmed J. Obaid. Handbook of Research on Advanced Practical Approaches to Deepfake Detection and Applications. IGI Global, 2022.
Trouver le texte intégralAbdul-Majeed, Ghassan H., Adriana Burlea-Schiopoiu, Parul Aggarwal et Ahmed J. Obaid. Handbook of Research on Advanced Practical Approaches to Deepfake Detection and Applications. IGI Global, 2022.
Trouver le texte intégralAbdul-Majeed, Ghassan H., Adriana Burlea-Schiopoiu, Parul Aggarwal et Ahmed J. Obaid. Handbook of Research on Advanced Practical Approaches to Deepfake Detection and Applications. IGI Global, 2022.
Trouver le texte intégralGaur, Loveleen. Deepfakes : Creation, Detection, and Impact. CRC Press, 2022.
Trouver le texte intégralGaur, Loveleen. Deepfakes : Creation, Detection, and Impact. Taylor & Francis Group, 2022.
Trouver le texte intégralGaur, Loveleen. Deepfakes : Creation, Detection, and Impact. Taylor & Francis Group, 2022.
Trouver le texte intégralGaur, Loveleen. Deepfakes : Creation, Detection, and Impact. Taylor & Francis Group, 2022.
Trouver le texte intégralGaur, Loveleen. Deepfakes : Creation, Detection, and Impact. CRC Press LLC, 2022.
Trouver le texte intégralBusch, Christoph, Christian Rathgeb, Ruben Vera-Rodriguez et Ruben Tolosana. Handbook of Digital Face Manipulation and Detection : From DeepFakes to Morphing Attacks. Springer International Publishing AG, 2021.
Trouver le texte intégralChapitres de livres sur le sujet "Deepfake Detection"
Lyu, Siwei. « DeepFake Detection ». Dans Multimedia Forensics, 313–31. Singapore : Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7621-5_12.
Texte intégralLi, Yuezun, Pu Sun, Honggang Qi et Siwei Lyu. « Toward the Creation and Obstruction of DeepFakes ». Dans Handbook of Digital Face Manipulation and Detection, 71–96. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-87664-7_4.
Texte intégralKorshunov, Pavel, et Sébastien Marcel. « The Threat of Deepfakes to Computer and Human Visions ». Dans Handbook of Digital Face Manipulation and Detection, 97–115. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-87664-7_5.
Texte intégralHao, Hanxiang, Emily R. Bartusiak, David Güera, Daniel Mas Montserrat, Sriram Baireddy, Ziyue Xiang, Sri Kalyan Yarlagadda et al. « Deepfake Detection Using Multiple Data Modalities ». Dans Handbook of Digital Face Manipulation and Detection, 235–54. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-87664-7_11.
Texte intégralBhilare, Omkar, Rahul Singh, Vedant Paranjape, Sravan Chittupalli, Shraddha Suratkar et Faruk Kazi. « DEEPFAKE CLI : Accelerated Deepfake Detection Using FPGAs ». Dans Parallel and Distributed Computing, Applications and Technologies, 45–56. Cham : Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-29927-8_4.
Texte intégralSaurav, Dheeraj Azad, Preeti Pandey, Mohammad Sheihan Javaid et Utkarsh. « Deepfake Detection Using AI ». Dans Advancement of Intelligent Computational Methods and Technologies, 98–102. London : CRC Press, 2024. http://dx.doi.org/10.1201/9781003487906-19.
Texte intégralHernandez-Ortega, Javier, Ruben Tolosana, Julian Fierrez et Aythami Morales. « DeepFakes Detection Based on Heart Rate Estimation : Single- and Multi-frame ». Dans Handbook of Digital Face Manipulation and Detection, 255–73. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-87664-7_12.
Texte intégralNadimpalli, Aakash Varma, et Ajita Rattani. « GBDF : Gender Balanced DeepFake Dataset Towards Fair DeepFake Detection ». Dans Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges, 320–37. Cham : Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-37742-6_25.
Texte intégralRehman, Mariam, Mehran Rasool et Sadaf Safder. « DeepFake Detection Using Deep Learning ». Dans Communications in Computer and Information Science, 142–54. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-7969-1_11.
Texte intégralRajesh, N., M. S. Prajwala, Nancy Kumari, Muhammad Rayyan et A. C. Ramachandra. « Hybrid Model for Deepfake Detection ». Dans Lecture Notes in Electrical Engineering, 639–49. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2828-4_57.
Texte intégralActes de conférences sur le sujet "Deepfake Detection"
Ju, Yan, Chengzhe Sun, Shan Jia, Shuwei Hou, Zhaofeng Si, Soumyya Kanti Datta, Lipeng Ke, Riky Zhou, Anita Nikolich et Siwei Lyu. « DeepFake-o-meter v2.0 : An Open Platform for DeepFake Detection ». Dans 2024 IEEE 7th International Conference on Multimedia Information Processing and Retrieval (MIPR), 439–45. IEEE, 2024. http://dx.doi.org/10.1109/mipr62202.2024.00075.
Texte intégralSarada, B., TVS Laxmi Sudha, Meghana Domakonda et B. Vasantha. « Audio Deepfake Detection and Classification ». Dans 2024 Asia Pacific Conference on Innovation in Technology (APCIT), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/apcit62007.2024.10673438.
Texte intégralS, Prakash Raj, Pravin D, Sabareeswaran G, Sanjith R. K et Gomathi B. « Deepfake Detection Using Deep Learning ». Dans 2024 10th International Conference on Advanced Computing and Communication Systems (ICACCS), 1768–74. IEEE, 2024. http://dx.doi.org/10.1109/icaccs60874.2024.10717155.
Texte intégralRavale, Ujwala, Riya Ramesh Tattu, Ashish Baban Bhoir et Sneha Bhaskar Mahajan. « Deepfake Detection using InceptionResNetV2 Model ». Dans 2024 IEEE 3rd World Conference on Applied Intelligence and Computing (AIC), 873–79. IEEE, 2024. http://dx.doi.org/10.1109/aic61668.2024.10730917.
Texte intégralKhan, Shafiqul Alam, et Damian Valles. « Deepfake Detection Using Transfer Learning ». Dans 2024 IEEE 15th Annual Ubiquitous Computing, Electronics & ; Mobile Communication Conference (UEMCON), 556–62. IEEE, 2024. http://dx.doi.org/10.1109/uemcon62879.2024.10754706.
Texte intégralOuajdi, Hafsa, Oussama Hadder, Modan Tailleur, Mathieu Lagrange et Laurie M. Heller. « Detection of Deepfake Environmental Audio ». Dans 2024 32nd European Signal Processing Conference (EUSIPCO), 196–200. IEEE, 2024. http://dx.doi.org/10.23919/eusipco63174.2024.10715076.
Texte intégralWu, Hsiu-Fu, Chia-Yi Hsu, Chih-Hsun Lin, Chia-Mu Yu et Chun-Ying Huang. « Deepfake Detection through Temporal Attention ». Dans 2024 33rd Wireless and Optical Communications Conference (WOCC), 109–13. IEEE, 2024. https://doi.org/10.1109/wocc61718.2024.10786063.
Texte intégralXie, Yuankun, Chenxu Xiong, Xiaopeng Wang, Zhiyong Wang, Yi Lu, Xin Qi, Ruibo Fu et al. « Does Current Deepfake Audio Detection Model Effectively Detect ALM-Based Deepfake Audio ? » Dans 2024 IEEE 14th International Symposium on Chinese Spoken Language Processing (ISCSLP), 481–85. IEEE, 2024. https://doi.org/10.1109/iscslp63861.2024.10800375.
Texte intégralWin, Aung Kyi, Myo Min Hein, Chit Htay Lwin, Aung Myo Thu, Myo Myat Thu et Nu Yin Khaing. « A Novel Methodology for Deepfake Detection Using MesoNet and GAN-based Deepfake Creation ». Dans 2024 5th International Conference on Advanced Information Technologies (ICAIT), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/icait65209.2024.10754912.
Texte intégralBao, Han, Xuhong Zhang, Qinying Wang, Kangming Liang, Zonghui Wang, Shouling Ji et Wenzhi Chen. « Pluggable Watermarking of Deepfake Models for Deepfake Detection ». Dans Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California : International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/37.
Texte intégral