Livres sur le sujet « Deep ocean circulation »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Deep ocean circulation.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 25 meilleurs livres pour votre recherche sur le sujet « Deep ocean circulation ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les livres sur diverses disciplines et organisez correctement votre bibliographie.

1

1926-, Teramoto Toshihiko, dir. Deep ocean circulation : Physical and chemical aspects. Amsterdam : Elsevier, 1993.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Johnson, Gregory Conrad. Near-equatorial deep circulation in the Indian and Pacific Oceans. Woods Hole, Mass : Woods Hole Oceanographic Institution, 1990.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Johnson, Gregory Conrad. Near-equatorial deep circulation in the Indian and Pacific Oceans. Woods Hole, Mass : Woods Hole Oceanographic Institution, 1990.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Edwards, Christopher A. Dynamics of nonlinear cross-equatorial flow in the deep ocean. Woods Hole, Mass : Massachusetts Institute of Technology, Woods Hole Oceanographic Institution, Joint Program in Oceanography/Applied Ocean Science and Engineering, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Chippindale, Marc David. Deep ocean circulation near the Charlie-Gibbs fracture zone. Norwich : University of East Anglia, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

C, Chu P., et Gascard J. C, dir. Deep convection and deep water formation in the oceans : Proceedings of the International Monterey Colloquium on Deep Convection and Deep Water Formation in the Oceans. Amsterdam : Elsevier, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Speer, Kevin George. The influence of geothermal sources on deep ocean temperature, salinity, and flow fields. Woods Hole, Mass : Woods Hole Oceanographic Institution, 1988.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Pacific deep circulation in world ocean cicrulation model : Sekai kaiyō gaijumkan moderu kora mita Taiheiyō shinsō junkan. Tokyo] : [University of Tokyo, Center for Climate System Research], 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Tōkyō Daigaku. Kikō Shisutemu Kenkyū Sentā, dir. Role of freshwater forcing and salt transport in the formation of the Atlantic deep circulation. Tokyo] : University of Tokyo, Center for Climate System Research, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Levy-Ryan, Ellen. Moored current meter and temperature-pressure recorder measurements from the western North Atlantic (high energy benthic boundary layer and abyssal circulation experiments 1983-1984) : Volume XXXIX. Woods Hole, Mass : Woods Hole Oceanographic Institution, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

LeGrand, Pascal. What do paleo-geochemical tracers tell us about the deep ocean circulation during the last ice age ? Woods Hole, Mass : Woods Hole Oceanographic Institution, 1994.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

LeGrand, Pascal. What do paleo-geochemical tracers tell us about the deep ocean circulation during the last ice age ? Woods Hole, Mass : Woods Hole Oceanographic Institution, 1994.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Brix, Holger. North Atlantic deep water and Antarctic bottom water : Their interaction and influence on modes of the global ocean circulation = Die wechselseitige Beeinflussung von Nordatlantischem Tiefenwasser und antarktischem Bodenwasser und ihre Rolle für globale Moden der ozeanischen Zirkulation. Bremerhaven : Alfred-Wegener-Institut für Polar- und Meeresforschung, 2001.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Schodlok, Michael. Über die Tiefenwasserausbreitung im Weddellmeer und in der Scotia-See : Numerische Untersuchungen der Transport- und Austauschprozesse in der Weddell-Scotia-Konfluenz-Zone = On the spreading of deep water in the Weddell and Scotia seas : a numerical model approach to investigate the transport and exchange processes of the Weddell Scotia Confluence. Bremerhaven : Alfred-Wegener-Institut für Polar- und Meeresforschung, 2002.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Schmiedl, Gerhard. Rekonstruktion der spätquartären Tiefenwasserzirkulation und Produktivität im östlichen Südatlantik anhand von benthischen Foraminiferenvergesellschaftungen = : Late Quaternary benthic foraminiferal assemblages from the eastern South Atlantic Ocean : reconstruction of deep water circulation and productivity changes. Bremerhaven : Alfred-Wegener-Institut für Polar- und Meeresforschung, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Deep Ocean Circulation - Physical and Chemical Aspects. Elsevier, 1993. http://dx.doi.org/10.1016/s0422-9894(08)x7061-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Teramoto, T. Deep Ocean Circulation : Physical and Chemical Aspects. Elsevier Science & Technology Books, 1993.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Jiménez, Hernán Eduardo García. On the large-scale characteristics, fluxes, and variability of the North Atlantic Deep Water and its deep western boundary current deduced from nutrient and oxygen data. 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Jiménez, Hernán Eduardo García. On the large-scale characteristics, fluxes, and variability of the North Atlantic Deep Water and its deep western boundary current deduced from nutrient and oxygen data. 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Foulc, Jean-Numa, et Frederic Aitken. From Deep Sea to Laboratory 2 : Discovering H. M. S. Challenger's Physical Measurements Relating to Ocean Circulation. Wiley & Sons, Incorporated, John, 2019.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Foulc, Jean-Numa, et Frederic Aitken. From Deep Sea to Laboratory 2 : Discovering H. M. S. Challenger's Physical Measurements Relating to Ocean Circulation. Wiley & Sons, Incorporated, John, 2019.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Foulc, Jean-Numa, et Frederic Aitken. From Deep Sea to Laboratory 2 : Discovering H. M. S. Challenger's Physical Measurements Relating to Ocean Circulation. Wiley & Sons, Incorporated, John, 2019.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Foulc, Jean-Numa, et Frederic Aitken. From Deep Sea to Laboratory 2 : From the Discovery of Physical Measurements to H. M. S Challenger in Relation to Ocean Circulation. Wiley & Sons, Incorporated, John, 2019.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Artale, Vincenzo, Nadia Lo Bue, Katrin Schroeder et Vassilis Zervakis, dir. Impact of Deep Oceanic Processes on Circulation and Climate Variability : Examples from the Mediterranean Sea and the Global Ocean. Frontiers Media SA, 2022. http://dx.doi.org/10.3389/978-2-88974-240-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Goswami, B. N., et Soumi Chakravorty. Dynamics of the Indian Summer Monsoon Climate. Oxford University Press, 2017. http://dx.doi.org/10.1093/acrefore/9780190228620.013.613.

Texte intégral
Résumé :
Lifeline for about one-sixth of the world’s population in the subcontinent, the Indian summer monsoon (ISM) is an integral part of the annual cycle of the winds (reversal of winds with seasons), coupled with a strong annual cycle of precipitation (wet summer and dry winter). For over a century, high socioeconomic impacts of ISM rainfall (ISMR) in the region have driven scientists to attempt to predict the year-to-year variations of ISM rainfall. A remarkably stable phenomenon, making its appearance every year without fail, the ISM climate exhibits a rather small year-to-year variation (the standard deviation of the seasonal mean being 10% of the long-term mean), but it has proven to be an extremely challenging system to predict. Even the most skillful, sophisticated models are barely useful with skill significantly below the potential limit on predictability. Understanding what drives the mean ISM climate and its variability on different timescales is, therefore, critical to advancing skills in predicting the monsoon. A conceptual ISM model helps explain what maintains not only the mean ISM but also its variability on interannual and longer timescales.The annual ISM precipitation cycle can be described as a manifestation of the seasonal migration of the intertropical convergence zone (ITCZ) or the zonally oriented cloud (rain) band characterized by a sudden “onset.” The other important feature of ISM is the deep overturning meridional (regional Hadley circulation) that is associated with it, driven primarily by the latent heat release associated with the ISM (ITCZ) precipitation. The dynamics of the monsoon climate, therefore, is an extension of the dynamics of the ITCZ. The classical land–sea surface temperature gradient model of ISM may explain the seasonal reversal of the surface winds, but it fails to explain the onset and the deep vertical structure of the ISM circulation. While the surface temperature over land cools after the onset, reversing the north–south surface temperature gradient and making it inadequate to sustain the monsoon after onset, it is the tropospheric temperature gradient that becomes positive at the time of onset and remains strongly positive thereafter, maintaining the monsoon. The change in sign of the tropospheric temperature (TT) gradient is dynamically responsible for a symmetric instability, leading to the onset and subsequent northward progression of the ITCZ. The unified ISM model in terms of the TT gradient provides a platform to understand the drivers of ISM variability by identifying processes that affect TT in the north and the south and influence the gradient.The predictability of the seasonal mean ISM is limited by interactions of the annual cycle and higher frequency monsoon variability within the season. The monsoon intraseasonal oscillation (MISO) has a seminal role in influencing the seasonal mean and its interannual variability. While ISM climate on long timescales (e.g., multimillennium) largely follows the solar forcing, on shorter timescales the ISM variability is governed by the internal dynamics arising from ocean–atmosphere–land interactions, regional as well as remote, together with teleconnections with other climate modes. Also important is the role of anthropogenic forcing, such as the greenhouse gases and aerosols versus the natural multidecadal variability in the context of the recent six-decade long decreasing trend of ISM rainfall.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie