Articles de revues sur le sujet « Data structures (Computer science) »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Data structures (Computer science).

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Data structures (Computer science) ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Manjula, V. « Graph Applications to Data Structures ». Advanced Materials Research 433-440 (janvier 2012) : 3297–301. http://dx.doi.org/10.4028/www.scientific.net/amr.433-440.3297.

Texte intégral
Résumé :
This paper presents a topic on Graph theory and its application to data Structures which I consider basic and useful to students in APPLIED MATHEMATICS and ENGINEERING.This paper gives an elementary introduction of Graph theory and its application to data structures. Elements of Graph theory are indispensable in almost all computer Science areas .It can be used in Some areas such as syntactic analysis, fault detection, diagnosis in computers and minimal path problems. The computer representation and manipulation of graph are also discussed so that certain algorithms can be included .A major theme of this paper is to study Graph theory and its Application to data structures Furthermore I hope the students not only learn the course but also develop their analogy perceive, formulate and to solve mathematical programs Thus Graphs especially trees, binary trees are used widely in the representation of data structures this course one can develop mathematical maturity, ability to understand and create mathematical argumentsMethod of derivation is procedure given in the text books with necessary formulae and their application . Concepts and notations from discrete mathematics are useful in studying and describing objects and problems in branches of computer science, such as computer algorithms, programming languages.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Tiwari, Adarsh, Pradeep Kanyal, Himanshu Panchal et Manjot Kaur Bhatia. « Computer Science and High Dimensional Data Modelling ». International Journal for Research in Applied Science and Engineering Technology 10, no 12 (31 décembre 2022) : 517–20. http://dx.doi.org/10.22214/ijraset.2022.47922.

Texte intégral
Résumé :
Abstract: The need to grasp large database structures is a very important issue in biological and life science. This review paper is aimed toward quantitative medical researchers searching for guidance in modeling large numbers of variables in medical research, how this relates to straightforward linear models and therefore the geometry that underlies their analysis. Issues reviewed include LASSO-related approaches, principal-component based analysis, and problems with model stability and interpretation. Model misspecification issues associated with potential nonlinearities are examined, as is that the Bayesian perspective on these issues.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Munro, Ian. « Succinct Data Structures ». Electronic Notes in Theoretical Computer Science 91 (février 2004) : 3. http://dx.doi.org/10.1016/j.entcs.2003.12.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Giles, D. « Editorial - Data Structures ». Computer Journal 34, no 5 (1 mai 1991) : 385. http://dx.doi.org/10.1093/comjnl/34.5.385.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Almanza-Cortés, Daniel Felipe, Manuel Felipe Del Toro-Salazar, Ricardo Andrés Urrego-Arias, Pedro Guillermo Feijóo-García et Fernando De la Rosa-Rosero. « Scaffolded Block-based Instructional Tool for Linear Data Structures : A Constructivist Design to Ease Data Structures’ Understanding ». International Journal of Emerging Technologies in Learning (iJET) 14, no 10 (30 mai 2019) : 161. http://dx.doi.org/10.3991/ijet.v14i10.10051.

Texte intégral
Résumé :
Data Structures courses commonly introduce topics involving high levels of abstraction and complexity, requiring significant effort from instructors and apprentices to achieve positive outcomes from the teaching-learning process. Despite the multiple studies that have occurred within the Computer Science Education (CSE) community to understand the experiences novice programmers may have when learning how to program, there is still a lack of exploration and research on understanding these experiences in scenarios different from first-year Computer Science (CS) courses. Looking further from CS introductory courses, this paper presents the results of a pilot study that evaluated the interaction of a group of CS Colombian students with DStBlocks, which is a scaffolded block-based instructional technology, designed and developed to ease linear data structures understanding. The findings and results of this pilot study are favorable, corresponding to tests centered on user experience and learning impact.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Smaragdakis, Yannis. « High-level data structures ». Communications of the ACM 55, no 12 (décembre 2012) : 90. http://dx.doi.org/10.1145/2380656.2380676.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Louchard, G., Claire Kenyon et R. Schott. « Data Structures' Maxima ». SIAM Journal on Computing 26, no 4 (août 1997) : 1006–42. http://dx.doi.org/10.1137/s0097539791196603.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Panangaden, Prakash, et Clark Verbrugge. « Generating irregular partitionable data structures ». Theoretical Computer Science 238, no 1-2 (mai 2000) : 31–80. http://dx.doi.org/10.1016/s0304-3975(98)00226-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Elmasry, Amr, Meng He, J. Ian Munro et Patrick K. Nicholson. « Dynamic range majority data structures ». Theoretical Computer Science 647 (septembre 2016) : 59–73. http://dx.doi.org/10.1016/j.tcs.2016.07.039.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Gagie, Travis, Meng He, Gonzalo Navarro et Carlos Ochoa. « Tree path majority data structures ». Theoretical Computer Science 833 (septembre 2020) : 107–19. http://dx.doi.org/10.1016/j.tcs.2020.05.039.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Schalk, Andrea, et José Juan Palacios-Perez. « Concrete Data Structures as Games ». Electronic Notes in Theoretical Computer Science 122 (mars 2005) : 193–210. http://dx.doi.org/10.1016/j.entcs.2004.06.058.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Gupta, Ankur, Wing-Kai Hon, Rahul Shah et Jeffrey Scott Vitter. « Compressed data structures : Dictionaries and data-aware measures ». Theoretical Computer Science 387, no 3 (novembre 2007) : 313–31. http://dx.doi.org/10.1016/j.tcs.2007.07.042.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Smith, N. S. « Spatial data models and data structures ». Computer-Aided Design 22, no 3 (avril 1990) : 184–90. http://dx.doi.org/10.1016/0010-4485(90)90077-p.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Herlihy, Maurice. « Technical perspectiveHighly concurrent data structures ». Communications of the ACM 52, no 5 (mai 2009) : 99. http://dx.doi.org/10.1145/1506409.1506430.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Hartline, Jason D., Edwin S. Hong, Alexander E. Mohr, William R. Pentney et Emily C. Rocke. « Characterizing History Independent Data Structures ». Algorithmica 42, no 1 (9 février 2005) : 57–74. http://dx.doi.org/10.1007/s00453-004-1140-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Taubenfeld, Gadi. « Contention-sensitive data structures and algorithms ». Theoretical Computer Science 677 (mai 2017) : 41–55. http://dx.doi.org/10.1016/j.tcs.2017.03.017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

J., Girish Raguvir, Manas Jyoti Kashyop et N. S. Narayanaswamy. « Dynamic data structures for interval coloring ». Theoretical Computer Science 838 (octobre 2020) : 126–42. http://dx.doi.org/10.1016/j.tcs.2020.06.024.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Colvin, Robert, Simon Doherty et Lindsay Groves. « Verifying Concurrent Data Structures by Simulation ». Electronic Notes in Theoretical Computer Science 137, no 2 (juillet 2005) : 93–110. http://dx.doi.org/10.1016/j.entcs.2005.04.026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Stein, W., S. Hassfeld et J. Muhling. « Tracing of Thin Tubular Structures in Computer Tomographic Data ». Computer Aided Surgery 3, no 2 (janvier 1998) : 83–88. http://dx.doi.org/10.3109/10929089809148133.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Esponda-Argüero, Margarita. « Techniques for Visualizing Data Structures in Algorithmic Animations ». Information Visualization 9, no 1 (29 janvier 2009) : 31–46. http://dx.doi.org/10.1057/ivs.2008.26.

Texte intégral
Résumé :
This paper deals with techniques for the design and production of appealing algorithmic animations and their use in computer science education. A good visual animation is both a technical artifact and a work of art that can greatly enhance the understanding of an algorithm's workings. In the first part of the paper, I show that awareness of the composition principles used by other animators and visual artists can help programmers to create better algorithmic animations. The second part shows how to incorporate those ideas in novel animation systems, which represent data structures in a visually intuitive manner. The animations described in this paper have been implemented and used in the classroom for courses at university level.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Nash, John B., et Pauline A. Moroz. « An Examination of the Factor Structures of the Computer Attitude Scale ». Journal of Educational Computing Research 17, no 4 (décembre 1997) : 341–56. http://dx.doi.org/10.2190/ngdu-h73e-xmr3-tg5j.

Texte intégral
Résumé :
Previous research regarding the popular Computer Attitude Scale (CAS) has indicated that the computer confidence and computer anxiety subscales measure the same trait. This study, utilizing data yielded from 208 educators, obtained estimates of the reliability of the four subscale version of the forty item CAS; provided detailed information regarding the factor patterns of the CAS subscales; and provided evidence about the differential validity of the CAS among four groups with differing intensity of computer usage. Correlations and exploratory factor analysis were used to analyze the data. The results confirm that the confidence and anxiety subscales are a continuum. A new, smaller, subscale was created to reflect this relationship. Further, a new factor, attitudes toward academic endeavors associated with computer training, was named. The CAS may now be interpreted as a thirty-four-item scale addressing computer liking, perceived usefulness of computers, computer confidence/anxiety, and attitudes toward academic endeavors associated with computer training.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Zhang, Qin. « Can data structures treat us fairly ? » Communications of the ACM 65, no 8 (août 2022) : 82. http://dx.doi.org/10.1145/3543843.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Goller, N. E. « Hybrid Data Structures Defined by Indirection ». Computer Journal 28, no 1 (1 janvier 1985) : 44–53. http://dx.doi.org/10.1093/comjnl/28.1.44.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Shavit, Nir. « Data structures in the multicore age ». Communications of the ACM 54, no 3 (mars 2011) : 76–84. http://dx.doi.org/10.1145/1897852.1897873.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Gorshkov, P. V. « Rational data structures and their applications ». Cybernetics 25, no 6 (1990) : 760–65. http://dx.doi.org/10.1007/bf01069776.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Andon, F. I., V. A. Reznichenko et A. E. Yashunin. « A calculus for hierarchical data structures ». Cybernetics 20, no 6 (1985) : 785–90. http://dx.doi.org/10.1007/bf01072163.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Patterson, Evan, Owen Lynch et James Fairbanks. « Categorical Data Structures for Technical Computing ». Compositionality 4 (28 décembre 2022) : 5. http://dx.doi.org/10.32408/compositionality-4-5.

Texte intégral
Résumé :
Many mathematical objects can be represented as functors from finitely-presented categories C to Set. For instance, graphs are functors to Set from the category with two parallel arrows. Such functors are known informally as C-sets. In this paper, we describe and implement an extension of C-sets having data attributes with fixed types, such as graphs with labeled vertices or real-valued edge weights. We call such structures acsets, short for attributed C-sets. Derived from previous work on algebraic databases, acsets are a joint generalization of graphs and data frames. They also encompass more elaborate graph-like objects such as wiring diagrams and Petri nets with rate constants. We develop the mathematical theory of acsets and then describe a generic implementation in the Julia programming language, which uses advanced language features to achieve performance comparable with specialized data structures.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Shand, Mark A. « Algorithms for corner stitched data-structures ». Algorithmica 2, no 1-4 (novembre 1987) : 61–80. http://dx.doi.org/10.1007/bf01840349.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Gostev, Yu G. « Generating power of atomic grammars on data structures. Encoding of data structures by strings of symbols ». Cybernetics 24, no 5 (septembre 1988) : 575–82. http://dx.doi.org/10.1007/bf01255669.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Ferragina, Paolo, Fabrizio Lillo et Giorgio Vinciguerra. « On the performance of learned data structures ». Theoretical Computer Science 871 (juin 2021) : 107–20. http://dx.doi.org/10.1016/j.tcs.2021.04.015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Hains, Gaétan, Frédéric Loulergue et John Mullins. « Concrete data structures and functional parallel programming ». Theoretical Computer Science 258, no 1-2 (mai 2001) : 233–67. http://dx.doi.org/10.1016/s0304-3975(00)00010-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Ono, Hirotaka, Kazuhisa Makino et Toshihide Ibaraki. « Logical analysis of data with decomposable structures ». Theoretical Computer Science 289, no 2 (octobre 2002) : 977–95. http://dx.doi.org/10.1016/s0304-3975(01)00413-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Delgado-Friedrichs, Olaf. « Data structures and algorithms for tilings I ». Theoretical Computer Science 303, no 2-3 (juillet 2003) : 431–45. http://dx.doi.org/10.1016/s0304-3975(02)00500-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Andy, Gill. « Debugging Haskell by Observing Intermediate Data Structures ». Electronic Notes in Theoretical Computer Science 41, no 1 (août 2001) : 1. http://dx.doi.org/10.1016/s1571-0661(05)80538-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Fariña, Antonio, Susana Ladra, Oscar Pedreira et Ángeles S. Places. « Rank and Select for Succinct Data Structures ». Electronic Notes in Theoretical Computer Science 236 (avril 2009) : 131–45. http://dx.doi.org/10.1016/j.entcs.2009.03.019.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Tasiran, Serdar, et Shaz Qadeer. « Runtime Refinement Checking of Concurrent Data Structures ». Electronic Notes in Theoretical Computer Science 113 (janvier 2005) : 163–79. http://dx.doi.org/10.1016/j.entcs.2004.01.028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Ábrahám, Erika, Marc Herbstritt, Bernd Becker et Martin Steffen. « Bounded Model Checking with Parametric Data Structures ». Electronic Notes in Theoretical Computer Science 174, no 3 (mai 2007) : 3–16. http://dx.doi.org/10.1016/j.entcs.2006.12.019.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Guessarian, Irène. « Some Fixpoint Techniques in Algebraic Structures and Applications to Computer Science ». Fundamenta Informaticae 10, no 4 (1 octobre 1987) : 387–413. http://dx.doi.org/10.3233/fi-1987-10405.

Texte intégral
Résumé :
This paper recalls some fixpoint theorems in ordered algebraic structures and surveys some ways in which these theorems are applied in computer science. We describe via examples three main types of applications: in semantics and proof theory, in logic programming and in deductive data bases.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Driscoll, James R., Neil Sarnak, Daniel D. Sleator et Robert E. Tarjan. « Making data structures persistent ». Journal of Computer and System Sciences 38, no 1 (février 1989) : 86–124. http://dx.doi.org/10.1016/0022-0000(89)90034-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Jagannathan, Suresh. « TS/Scheme : Distributed data structures in Lisp ». LISP and Symbolic Computation 7, no 4 (1994) : 291–314. http://dx.doi.org/10.1007/bf01018613.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Rakesh, Palepu Narasimha. « A Data Science Approach to Bioinformatics ». International Journal for Research in Applied Science and Engineering Technology 9, no VII (31 juillet 2021) : 3860–69. http://dx.doi.org/10.22214/ijraset.2021.37221.

Texte intégral
Résumé :
Computer aided drug design (CADD) which uses the computational advance towards to develop, discover and scrutinize and examine drugs and alike biologically agile molecules. CADD is a specialized stream which uses the computational techniques to mimic drug-receptor interactions. CADD procedures are so much dependent on the tools of bioinformatics, databases & applications. There are so many advantages of computer aided drug discovery; it saves lot of time which is one of the main advantages followed by low cost and more accuracy. CADD required less manpower to work. There are different types of CADD such as ligand and structure based design. Objectives of the Computer aided drug design are to boost up the screening process, to test the rational of drug design, to efficiently screen and to remove hopeless ones as early as possible. In Drug designing the selected molecule should be organic small molecule, complementary in shape to the target and oppositely charged to the biomolecular target. The molecule will interacts and binds with the target which activates or inhibits the function of a biomolecule such as a protein or lipid. The main basic goal in the drug design is to forecast whether a given molecule will bind to target and if thus how strongly. Molecular mechanics techniques also used to provide the semi quantitative prediction of the binding affinity. These techniques use machine learning, linear regression, neural nets or other statistical methods to derive predictive binding affinity equations. Preferably, the computational technique will be able to forecast the affinity prior to a compound is synthesized, saving huge time and cost. Computational techniques have quickened the discovery by decreasing the number of iterations required and have often produced the novel structures.
Styles APA, Harvard, Vancouver, ISO, etc.
42

ETIENNE, F. « The Impact of Modern Graphics Tools on Science, and their Limitations ». International Journal of Modern Physics C 02, no 01 (mars 1991) : 58–65. http://dx.doi.org/10.1142/s012918319100007x.

Texte intégral
Résumé :
Within the last few years the range of scientific applications for which computer graphics is used has become extremely large. However, not all scientists require the same level of computing power. Until recently the software interface to graphics display systems has been provided by the manufacturers of the hardware. This generated interest in the possibility of using graphics standards. Another important issue is related to the deluge of data generated by super-computers and high-volume data sources which make it impossible for users to have an overall knowledge of either the data structures or the application programs. Partial solutions can be found in emerging products providing an interactive computational environment for scientific visualization. Some of the characteristics required for graphics hardware are presented. From a hardware perspective, graphics computing involves the use of a graphical computer system with sufficient power and functionality that the user can manipulate and interact with displayed objects. To achieve such a level of performance computers are usually designed as networked workstations with access to local graphics capabilities. Finally, it is made clear that the main computer graphics applications are scientific activities. From high energy physics experiments with wireframe event displays up to medical imaging with interactive volume rendering, scientific visualization is not simply displaying data from data intensive sources. Fields of computer graphics like image processing, computer aided design, signal processing and user interfaces provide tools helping researchers to understand and steer scientific computation.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Hambrusch, Susanne E., et Chuan-Ming Liu. « Data replication in static tree structures ». Information Processing Letters 86, no 4 (mai 2003) : 197–202. http://dx.doi.org/10.1016/s0020-0190(02)00503-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Chanchary, Farah, et Anil Maheshwari. « Time Windowed Data Structures for Graphs ». Journal of Graph Algorithms and Applications 23, no 2 (2019) : 191–226. http://dx.doi.org/10.7155/jgaa.00489.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Prokop, Yu V., O. H. Trofymenko et O. V. Dykyi. « RESEARCH OF APPROACHES TO TEACHING THE COURSE “ALGORITHMS AND DATA STRUCTURES” FOR COMPUTER SCIENCE STUDENTS ». Scientific notes of Taurida National V.I. Vernadsky University. Series : Technical Sciences 1, no 2 (2021) : 216–20. http://dx.doi.org/10.32838/2663-5941/2021.2-1/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Brit, Hagit, Shlomo Moran et Gadi Taubenfeld. « Public data structures : counters as a special case ». Theoretical Computer Science 289, no 1 (octobre 2002) : 401–23. http://dx.doi.org/10.1016/s0304-3975(01)00312-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Laube, Ulrich, et Markus E. Nebel. « Maximum likelihood analysis of algorithms and data structures ». Theoretical Computer Science 411, no 1 (janvier 2010) : 188–212. http://dx.doi.org/10.1016/j.tcs.2009.09.025.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Martí-Oliet, Narciso, Miguel Palomino et Alberto Verdejo. « A Tutorial on Specifying Data Structures in Maude ». Electronic Notes in Theoretical Computer Science 137, no 1 (juillet 2005) : 105–32. http://dx.doi.org/10.1016/j.entcs.2005.01.041.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Vitter, Jeffrey Scott. « Algorithms and Data Structures for External Memory ». Foundations and Trends® in Theoretical Computer Science 2, no 4 (2006) : 305–474. http://dx.doi.org/10.1561/0400000014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Desnoyers, Mathieu. « Proving the Correctness of Nonblocking Data Structures ». Queue 11, no 5 (mai 2013) : 30–43. http://dx.doi.org/10.1145/2488364.2490873.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie