Littérature scientifique sur le sujet « Data storage into DNA molecules »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Data storage into DNA molecules ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Data storage into DNA molecules"
Jiang, Jiao. « Application of gene editing technology to DNA digital data storage ». Highlights in Science, Engineering and Technology 73 (29 novembre 2023) : 452–58. http://dx.doi.org/10.54097/hset.v73i.14051.
Texte intégralGarafutdinov, R. R., A. R. Sakhabutdinova et A. V. Chemeris. « Long-term room temperature storage of DNA molecules ». Biomics 12, no 4 (2020) : 552–63. http://dx.doi.org/10.31301/2221-6197.bmcs.2020-49.
Texte intégralCeze, Luis, Jeff Nivala et Karin Strauss. « Molecular digital data storage using DNA ». Nature Reviews Genetics 20, no 8 (8 mai 2019) : 456–66. http://dx.doi.org/10.1038/s41576-019-0125-3.
Texte intégralZhang, Yun Peng, Feng Ying Tian, Man Hui Sun, Ding Yu, Fei Xiang Fan et Wei Guo Liu. « Based on DNA OTP Key Generation and Management Research ». Applied Mechanics and Materials 427-429 (septembre 2013) : 2470–72. http://dx.doi.org/10.4028/www.scientific.net/amm.427-429.2470.
Texte intégralCoudy, Delphine, Marthe Colotte, Aurélie Luis, Sophie Tuffet et Jacques Bonnet. « Long term conservation of DNA at ambient temperature. Implications for DNA data storage ». PLOS ONE 16, no 11 (11 novembre 2021) : e0259868. http://dx.doi.org/10.1371/journal.pone.0259868.
Texte intégralCarmean, Douglas, Luis Ceze, Georg Seelig, Kendall Stewart, Karin Strauss et Max Willsey. « DNA Data Storage and Hybrid Molecular–Electronic Computing ». Proceedings of the IEEE 107, no 1 (janvier 2019) : 63–72. http://dx.doi.org/10.1109/jproc.2018.2875386.
Texte intégralXu, Chengtao, Chao Zhao, Biao Ma et Hong Liu. « Uncertainties in synthetic DNA-based data storage ». Nucleic Acids Research 49, no 10 (9 avril 2021) : 5451–69. http://dx.doi.org/10.1093/nar/gkab230.
Texte intégralSolanki, Arnav, Zak Griffin, Purab Ranjan Sutradhar, Karisha Pradhan, Caiden Merritt, Amlan Ganguly et Marc Riedel. « Neural network execution using nicked DNA and microfluidics ». PLOS ONE 18, no 10 (19 octobre 2023) : e0292228. http://dx.doi.org/10.1371/journal.pone.0292228.
Texte intégralBhattarai-Kline, Santi, Sierra K. Lear et Seth L. Shipman. « One-step data storage in cellular DNA ». Nature Chemical Biology 17, no 3 (26 janvier 2021) : 232–33. http://dx.doi.org/10.1038/s41589-021-00737-2.
Texte intégralZhang, Cheng, Ranfeng Wu, Fajia Sun, Yisheng Lin, Yuan Liang, Jiongjiong Teng, Na Liu, Qi Ouyang, Long Qian et Hao Yan. « Parallel molecular data storage by printing epigenetic bits on DNA ». Nature 634, no 8035 (23 octobre 2024) : 824–32. http://dx.doi.org/10.1038/s41586-024-08040-5.
Texte intégralThèses sur le sujet "Data storage into DNA molecules"
Berton, Chloé. « Sécurité des données stockées sur molécules d’ADN ». Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0431.
Texte intégralThe volume of digital data produced worldwide every year is increasing exponentially, and current storage solutions are reaching their limits. In this context, data storage on DNA molecules holds great promise. Storing up to 10¹⁸ bytes per gram of DNA for almost no energy consumption, it has a lifespan 100 times longer than hard disks. As this storage technology is still under development, the opportunity presents itself to natively integrate data security mechanisms. This is the aim of this thesis. Our first contribution is a risk analysis of the entire storage chain, which has enabled us to identify vulnerabilities in digital and biological processes, particularly in terms of confidentiality, integrity, availability and traceability. A second contribution is the identification of elementary biological operators for simple manipulations of DNA. Using these operators, we have developed a DNACipher encryption solution that requires biomolecular decryption (DNADecipher) of the molecules before the data can be read correctly. This third contribution, based on enzymes, required the development of a coding algorithm for digital data into DNA sequences, a contribution called DSWE. This algorithm respects the constraints of biological processes (e.g. homopolymers) and our encryption solution. Our final contribution is an experimental validation of our secure storage chain. This is the first proof of concept showing that it is possible to secure this new storage medium using biomolecular manipulations
Piretti, Mattia. « Synthetic DNA as a novel data storage solution for digital images ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/22028/.
Texte intégralGermishuizen, Willem Andreas. « Dielectrophoresis as an addressing mechanism in a novel data storage system based on DNA ». Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.615680.
Texte intégralYanez, Ciceron. « SYNTHESIS OF NOVEL FLUORENE-BASED TWO-PHOTON ABSORBING MOLECULES AND THEIR APPLICATIONS IN OPTICAL DATA STORAGE, MICROFABRICATIO ». Doctoral diss., University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3573.
Texte intégralPh.D.
Department of Chemistry
Sciences
Chemistry PhD
Camerlengo, Terry Luke. « Techniques for Storing and Processing Next-Generation DNA Sequencing Data ». The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1388502159.
Texte intégralYanez, Ciceron. « Synthesis of novel fluorene-based two-photon absorbing molecules and their applications in optical data storage, microfabrication, and stimulated emission depletion ». Orlando, Fla. : University of Central Florida, 2009. http://purl.fcla.edu/fcla/etd/CFE0002913.
Texte intégralHalladjian, Sarkis. « Spatially Integrated Abstraction of Genetic Molecules ». Electronic Thesis or Diss., université Paris-Saclay, 2020. http://www.theses.fr/2020UPASG056.
Texte intégralThe human genome consists mainly of DNA, a macromolecule consisting of a long linear sequence of bases, tightly packed to fit in the relatively small nucleus. The packing gives rise to multiple hierarchical organizational levels. Recent research has shown that, along with the linear sequence, the spatial arrangement of the genome plays an important role in the genome’s function and activity. The visualization of both linear and spatial aspects of genome data is therefore necessary. In this thesis, we focus on the concept of continuous visual abstraction for multiscale data, applied to the visualization of the human genome. Visual abstraction is a concept inspired by illustrations that makes the job of visual processing simpler, by guiding the attention of the viewer to important aspects. We first extract characteristics of multiscale data and makes a parallel comparison between genome and astronomical data. The existing differences create the need for different approaches. A common point however is the need for continuous transitions that helps viewers grasp the relationships and relative size differences between scales. To satisfy the conditions posed by the two aspects of the multiscale genome data, we present two conceptual frameworks, based on the same data. The first framework, ScaleTrotter, represents the spatial structure of the genome, on all available levels. It gives users the freedom to travel from the nucleus of a cell to the atoms of the bases, passing through the different organizational levels of the genome. To make the exploration of the structure of all levels possible, smooth temporal transitions are used. Even though all the scales are not simultaneously visible, the temporal transition used superimposes two representations of the same element at consecutive scales emphasizing their relationship. To ensure the understandability and interactivity of the data, unnecessary parts of the data are abstracted away with the use of a scale-dependent camera. The second framework, Multiscale Unfolding, focuses on aspects that are not visible in ScaleTrotter: the linear sequence and a simultaneous overview of all the organizational levels. The data is straightened to unfold the packing that occurs on several levels in a way that conserves the connectivity between the elements. To represent all the available levels, we use smooth spatial transitions between the levels. These spatial transitions are based on the same concept of the temporal transitions of the previous framework, superimposing scales and emphasizing on their relationship and size difference. We introduce an interaction technique called Multiscale Zliding that allows the exploration of the data and further emphasizes the size differences between the levels. In each framework, one of either linear of spatial aspect of genome data is sacrificed to emphasize the other. The thesis concludes with a discussion about the possibility of combining the two frameworks, minimizing the sacrifices to explore the two equally important aspects of the genome. In this thesis, we take a step closer to fully understanding the activity of the genome
Favero, Francesco. « Development of two new approaches for NGS data analysis of DNA and RNA molecules and their application in clinical and research fields ». Doctoral thesis, Università del Piemonte Orientale, 2019. http://hdl.handle.net/11579/102446.
Texte intégralBoukis, Andreas Christos [Verfasser], et M. A. R. [Akademischer Betreuer] Meier. « Moleküle als potentielle Datenspeichersysteme : Multikomponentenreaktionen sind der Schlüssel = Molecules as potential data storage systems : Multicomponent reactions are the key / Andreas Christos Boukis ; Betreuer : M. A. R. Meier ». Karlsruhe : KIT-Bibliothek, 2018. http://d-nb.info/1164081071/34.
Texte intégralPearson, Anthony Craig. « Nanoscale Surface Patterning and Applications : Using Top-Down Patterning Methods to Aid Bottom-Up Fabrication ». BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3757.
Texte intégralLivres sur le sujet "Data storage into DNA molecules"
I, Bell George, et Marr Thomas G, dir. Computers and DNA : The proceedings of the Interface Between Computation Science and Nucleic Acid Sequencing Workshop, held Dec. 12 to 16, 1988 in Santa Fe, New Mexico. Redwood City, Calif : Addison-Wesley, 1990.
Trouver le texte intégralVenter, J. Craig, Chris Fields et Mark D. Adams. Automated DNA Sequencing and Analysis. Elsevier Science & Technology Books, 2012.
Trouver le texte intégral(Editor), Mark D. Adams, Chris Fields (Editor) et J. Craig Venter (Editor), dir. Automated DNA Sequencing and Analysis. Academic Press, 1994.
Trouver le texte intégralShomorony, Ilan, et Reinhard Heckel. Information-Theoretic Foundations of DNA Data Storage. Now Publishers, 2022.
Trouver le texte intégralDemidov, Vadim V. DNA Beyond Genes : From Data Storage and Computing to Nanobots, Nanomedicine, and Nanoelectronics. Springer, 2020.
Trouver le texte intégralDemidov, Vadim V. DNA Beyond Genes : From Data Storage and Computing to Nanobots, Nanomedicine, and Nanoelectronics. Springer International Publishing AG, 2021.
Trouver le texte intégralData in Modern Biology (Codata Bulletin,). Elsevier Science Pub Co, 1985.
Trouver le texte intégralHilgurt, S. Ya, et O. A. Chemerys. Reconfigurable signature-based information security tools of computer systems. PH “Akademperiodyka”, 2022. http://dx.doi.org/10.15407/akademperiodyka.458.297.
Texte intégralChapitres de livres sur le sujet "Data storage into DNA molecules"
Chen, Yuan-Jyue, et Georg Seelig. « Scaling Up DNA Computing with Array-Based Synthesis and High-Throughput Sequencing ». Dans Natural Computing Series, 281–93. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9891-1_16.
Texte intégralSingh, Baljinder. « DNA Digital Data Storage : Breakthroughs in Biomedical Research ». Dans Biomedical Translational Research, 135–40. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-4345-3_9.
Texte intégralJenifer, P., et T. Kirthiga Devi. « Enhancing Data Security Using DNA Algorithm in Cloud Storage ». Dans Artificial Intelligence Techniques for Advanced Computing Applications, 19–26. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5329-5_3.
Texte intégralKim, Raphael. « DNA as Digital Data Storage : Opportunities and Challenges for HCI ». Dans Communications in Computer and Information Science, 225–32. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60700-5_29.
Texte intégralSiddaramappa, V., et K. B. Ramesh. « DNA-Based XOR Operation (DNAX) for Data Security Using DNA as a Storage Medium ». Dans Integrated Intelligent Computing, Communication and Security, 343–51. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8797-4_36.
Texte intégralKruglik, S. G., C. Otto, A. G. Shvedko, V. V. Ermolenkov, V. A. Orlovich, V. S. Chirvony et P. Y. Turpin. « New Raman Data on Photoinduced Porphyrin Translocation and Exciplex Formation in Cu(TMpy-P4) — DNA Complex ». Dans Spectroscopy of Biological Molecules : Modern Trends, 395–96. Dordrecht : Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5622-6_177.
Texte intégralYatribi, Anouar, Mostafa Belkasmi et Fouad Ayoub. « An Efficient and Secure Forward Error Correcting Scheme for DNA Data Storage ». Dans Proceedings of the Tenth International Conference on Soft Computing and Pattern Recognition (SoCPaR 2018), 226–37. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17065-3_23.
Texte intégralSatz, Alexander L., et Weiren Cui. « Analysis of DNA-Encoded Library Screening Data : Selection of Molecules for Synthesis ». Dans Methods in Molecular Biology, 195–205. New York, NY : Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2545-3_23.
Texte intégralRasool, Abdur, Qiang Qu, Qingshan Jiang et Yang Wang. « A Strategy-based Optimization Algorithm to Design Codes for DNA Data Storage System ». Dans Algorithms and Architectures for Parallel Processing, 284–99. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95388-1_19.
Texte intégralPragaladan, R., et S. Sathappan. « A Secure Cloud Data Storage Combining DNA Structure and Multi-aspect Time-Integrated Cut-off Potential ». Dans Advances in Intelligent Systems and Computing, 361–74. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7200-0_33.
Texte intégralActes de conférences sur le sujet "Data storage into DNA molecules"
Ghosh, Nishant, N. Anushka Reddy, VNS Sasank, K. Suvarchala et Sushma Patkar. « Preserving History with Synthetic DNA : An Innovative Data Storage Solution ». Dans 2024 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/conecct62155.2024.10677101.
Texte intégralEn-Nattouh, Youssef, et Reda Jourani. « Improved storage of Big Data in DNA using the PCA algorithm ». Dans 2024 International Conference on Circuit, Systems and Communication (ICCSC), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/iccsc62074.2024.10616520.
Texte intégralSrivastava, Shubham, Krishna Gopal Benerjee et Adrish Banerjee. « Efficient Bidirectional RNNs for Substitution Error Correction in DNA Data Storage ». Dans 2024 IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN), 434–39. IEEE, 2024. http://dx.doi.org/10.1109/icmlcn59089.2024.10625179.
Texte intégralYuvarani, R., et R. Mahaveerakannan. « Enhanced Cloud Security Through DNA-based Authentication for Data Storage and Transactions ». Dans 2024 5th International Conference on Electronics and Sustainable Communication Systems (ICESC), 589–94. IEEE, 2024. http://dx.doi.org/10.1109/icesc60852.2024.10689928.
Texte intégralPalunčić, Filip, Daniella Palunčić et B. T. Maharaj. « Capacity of Runlength-Limited and GC-Content Constrained Codes for DNA Data Storage ». Dans 2024 IEEE International Symposium on Information Theory (ISIT), 1937–42. IEEE, 2024. http://dx.doi.org/10.1109/isit57864.2024.10619166.
Texte intégralMartens, Koen, David Barge, Lijun Liu, Sybren Santermans, Colin Stoquart, Jacobus Delport, Kherim Willems et al. « The Nanopore-FET as a High-Throughput Barcode Molecule Reader for Single-Molecule Omics and Read-out of DNA Digital Data Storage ». Dans 2022 IEEE International Electron Devices Meeting (IEDM). IEEE, 2022. http://dx.doi.org/10.1109/iedm45625.2022.10019451.
Texte intégralHeller, Michael J., Carl Edman, Don Ackley, WJ Kitchen, Christian Gurtner et Rachel Formosa. « ELECTRIC FIELD ASSISTED SELF-ASSEMBLY OF DNA BASED MOLECULAR CHROMOPHORE COMPONENTS FOR OPTICAL DATA STORAGE AND OTHER NANOTECHNOLOGY APPLICATIONS ». Dans Spatial Light Modulators and Integrated Optoelectronic Arrays. Washington, D.C. : OSA, 1999. http://dx.doi.org/10.1364/slm.1999.stua2.
Texte intégralPatel, Radhika, Dweepna Garg, Milind Shah, Safeya Dharmajwala, Kush Jindal et Amit Nayak. « DNA Archives : Revolutionizing Data Storage ». Dans 2023 3rd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA). IEEE, 2023. http://dx.doi.org/10.1109/icimia60377.2023.10426397.
Texte intégralWeide-Zaage, Kirsten. « Technical Implementation of DNA Data-Storage ». Dans 2024 International Conference on Electronics Packaging (ICEP). IEEE, 2024. http://dx.doi.org/10.23919/icep61562.2024.10535600.
Texte intégralMansuripur, Masud. « DNA, human memory, and the storage technology of the 21st century ». Dans Optical Data Storage, sous la direction de Terril Hurst et Seiji Kobayashi. SPIE, 2002. http://dx.doi.org/10.1117/12.453368.
Texte intégralRapports d'organisations sur le sujet "Data storage into DNA molecules"
Iudicone, Daniele, et Marina Montresor. Omics community protocols. EuroSea, 2023. http://dx.doi.org/10.3289/eurosea_d3.19.
Texte intégralHeifetz, Yael, et Michael Bender. Success and failure in insect fertilization and reproduction - the role of the female accessory glands. United States Department of Agriculture, décembre 2006. http://dx.doi.org/10.32747/2006.7695586.bard.
Texte intégralRon, Eliora, et Eugene Eugene Nester. Global functional genomics of plant cell transformation by agrobacterium. United States Department of Agriculture, mars 2009. http://dx.doi.org/10.32747/2009.7695860.bard.
Texte intégralRodriguez Muxica, Natalia. Open configuration options Bioinformatics for Researchers in Life Sciences : Tools and Learning Resources. Inter-American Development Bank, février 2022. http://dx.doi.org/10.18235/0003982.
Texte intégralEpel, Bernard, et Roger Beachy. Mechanisms of intra- and intercellular targeting and movement of tobacco mosaic virus. United States Department of Agriculture, novembre 2005. http://dx.doi.org/10.32747/2005.7695874.bard.
Texte intégralLichter, Amnon, Gopi K. Podila et Maria R. Davis. Identification of Genetic Determinants that Facilitate Development of B. cinerea at Low Temperature and its Postharvest Pathogenicity. United States Department of Agriculture, mars 2011. http://dx.doi.org/10.32747/2011.7592641.bard.
Texte intégral