Littérature scientifique sur le sujet « Data exfiltration attack »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Data exfiltration attack ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Data exfiltration attack"
Zimba, Aaron, et Mumbi Chishimba. « Exploitation of DNS Tunneling for Optimization of Data Exfiltration in Malware-free APT Intrusions ». Zambia ICT Journal 1, no 1 (11 décembre 2017) : 51–56. http://dx.doi.org/10.33260/zictjournal.v1i1.26.
Texte intégralUllah, Faheem, Matthew Edwards, Rajiv Ramdhany, Ruzanna Chitchyan, M. Ali Babar et Awais Rashid. « Data exfiltration : A review of external attack vectors and countermeasures ». Journal of Network and Computer Applications 101 (janvier 2018) : 18–54. http://dx.doi.org/10.1016/j.jnca.2017.10.016.
Texte intégralDo, Quang, Ben Martini et Kim-Kwang Raymond Choo. « A Data Exfiltration and Remote Exploitation Attack on Consumer 3D Printers ». IEEE Transactions on Information Forensics and Security 11, no 10 (octobre 2016) : 2174–86. http://dx.doi.org/10.1109/tifs.2016.2578285.
Texte intégralMeyers, Vincent, Michael Hefenbrock, Dennis Gnad et Mehdi Tahoori. « Leveraging Neural Trojan Side-Channels for Output Exfiltration ». Cryptography 9, no 1 (7 janvier 2025) : 5. https://doi.org/10.3390/cryptography9010005.
Texte intégralSachintha, Shakthi, Nhien-An Le-Khac, Mark Scanlon et Asanka P. Sayakkara. « Data Exfiltration through Electromagnetic Covert Channel of Wired Industrial Control Systems ». Applied Sciences 13, no 5 (24 février 2023) : 2928. http://dx.doi.org/10.3390/app13052928.
Texte intégralSingh, Sanjeev Pratap, et Naveed Afzal. « The Mesa Security Model 2.0 : A Dynamic Framework for Mitigating Stealth Data Exfiltration ». International Journal of Network Security & ; Its Applications 16, no 3 (29 mai 2024) : 23–40. http://dx.doi.org/10.5121/ijnsa.2024.16302.
Texte intégralChattra, Eka, et Obrin Candra Brillyant. « Implementation of Meltdown Attack Simulation for Cybersecurity Awareness Material ». ACMIT Proceedings 7, no 1 (7 juillet 2021) : 6–13. http://dx.doi.org/10.33555/acmit.v7i1.102.
Texte intégralRietz, René, Radoslaw Cwalinski, Hartmut König et Andreas Brinner. « An SDN-Based Approach to Ward Off LAN Attacks ». Journal of Computer Networks and Communications 2018 (21 novembre 2018) : 1–12. http://dx.doi.org/10.1155/2018/4127487.
Texte intégralAcar, Gunes, Steven Englehardt et Arvind Narayanan. « No boundaries : data exfiltration by third parties embedded on web pages ». Proceedings on Privacy Enhancing Technologies 2020, no 4 (1 octobre 2020) : 220–38. http://dx.doi.org/10.2478/popets-2020-0070.
Texte intégralAksoy, Ahmet, Luis Valle et Gorkem Kar. « Automated Network Incident Identification through Genetic Algorithm-Driven Feature Selection ». Electronics 13, no 2 (9 janvier 2024) : 293. http://dx.doi.org/10.3390/electronics13020293.
Texte intégralThèses sur le sujet "Data exfiltration attack"
Li, Huiyu. « Exfiltration et anonymisation d'images médicales à l'aide de modèles génératifs ». Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ4041.
Texte intégralThis thesis aims to address some specific safety and privacy issues when dealing with sensitive medical images within data lakes. This is done by first exploring potential data leakage when exporting machine learning models and then by developing an anonymization approach that protects data privacy.Chapter 2 presents a novel data exfiltration attack, termed Data Exfiltration by Compression (DEC), which leverages image compression techniques to exploit vulnerabilities in the model exporting process. This attack is performed when exporting a trained network from a remote data lake, and is applicable independently of the considered image processing task. By exploring both lossless and lossy compression methods, this chapter demonstrates how DEC can effectively be used to steal medical images and reconstruct them with high fidelity, using two public CT and MR datasets. This chapter also explores mitigation measures that a data owner can implement to prevent the attack. It first investigates the application of differential privacy measures, such as Gaussian noise addition, to mitigate this attack, and explores how attackers can create attacks resilient to differential privacy. Finally, an alternative model export strategy is proposed which involves model fine-tuning and code verification.Chapter 3 introduces the Generative Medical Image Anonymization framework, a novel approach to balance the trade-off between preserving patient privacy while maintaining the utility of the generated images to solve downstream tasks. The framework separates the anonymization process into two key stages: first, it extracts identity and utility-related features from medical images using specially trained encoders; then, it optimizes the latent code to achieve the desired trade-off between anonymity and utility. We employ identity and utility encoders to verify patient identities and detect pathologies, and use a generative adversarial network-based auto-encoder to create realistic synthetic images from the latent space. During optimization, we incorporate these encoders into novel loss functions to produce images that remove identity-related features while maintaining their utility to solve a classification problem. The effectiveness of this approach is demonstrated through extensive experiments on the MIMIC-CXR chest X-ray dataset, where the generated images successfully support lung pathology detection.Chapter 4 builds upon the work from Chapter 4 by utilizing generative adversarial networks (GANs) to create a more robust and scalable anonymization solution. The framework is structured into two distinct stages: first, we develop a streamlined encoder and a novel training scheme to map images into a latent space. In the second stage, we minimize the dual-loss functions proposed in Chapter 3 to optimize the latent representation of each image. This method ensures that the generated images effectively remove some identifiable features while retaining crucial diagnostic information. Extensive qualitative and quantitative experiments on the MIMIC-CXR dataset demonstrate that our approach produces high-quality anonymized images that maintain essential diagnostic details, making them well-suited for training machine learning models in lung pathology classification.The conclusion chapter summarizes the scientific contributions of this work, and addresses remaining issues and challenges for producing secured and privacy preserving sensitive medical data
Chapitres de livres sur le sujet "Data exfiltration attack"
Savić, Izabela, Haonan Yan, Xiaodong Lin et Daniel Gillis. « Adversarial Example Attacks and Defenses in DNS Data Exfiltration ». Dans Communications in Computer and Information Science, 147–63. Singapore : Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-9614-8_10.
Texte intégralSai Charan, P. V., P. Mohan Anand et Sandeep K. Shukla. « DMAPT : Study of Data Mining and Machine Learning Techniques in Advanced Persistent Threat Attribution and Detection ». Dans Artificial Intelligence. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99291.
Texte intégralSood, Aditya K., et Richard Enbody. « Data Exfiltration Mechanisms ». Dans Targeted Cyber Attacks, 77–93. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-12-800604-7.00005-x.
Texte intégralActes de conférences sur le sujet "Data exfiltration attack"
Cao, Phuong. « Jupyter Notebook Attacks Taxonomy : Ransomware, Data Exfiltration, and Security Misconfiguration ». Dans SC24-W : Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis, 750–54. IEEE, 2024. https://doi.org/10.1109/scw63240.2024.00106.
Texte intégralLiu, Yali, Cherita Corbett, Ken Chiang, Rennie Archibald, Biswanath Mukherjee et Dipak Ghosal. « Detecting sensitive data exfiltration by an insider attack ». Dans the 4th annual workshop. New York, New York, USA : ACM Press, 2008. http://dx.doi.org/10.1145/1413140.1413159.
Texte intégral« SIDD : A Framework for Detecting Sensitive Data Exfiltration by an Insider Attack ». Dans 2009 42nd Hawaii International Conference on System Sciences. IEEE, 2009. http://dx.doi.org/10.1109/hicss.2009.390.
Texte intégralAggarwal, Palvi, Sridhar Venkatesan, Jason Youzwak, Ritu Chadha et Cleotilde Gonzalez. « Discovering Cognitive Biases in Cyber Attackers’ Network Exploitation Activities : A Case Study ». Dans 15th International Conference on Applied Human Factors and Ergonomics (AHFE 2024). AHFE International, 2024. http://dx.doi.org/10.54941/ahfe1004771.
Texte intégralLuz, Júlio F., Paulo Freitas de Araujo-Filho, Henrique F. Arcoverde et Divanilson R. Campelo. « Unsupervised SOM-Based Intrusion Detection System for DNS Tunneling Attacks ». Dans Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais. Sociedade Brasileira de Computação - SBC, 2023. http://dx.doi.org/10.5753/sbseg.2023.233583.
Texte intégral