Articles de revues sur le sujet « Dark Matter, Dark Energy, Metrology »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Dark Matter, Dark Energy, Metrology.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Dark Matter, Dark Energy, Metrology ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Sedmik, René I. P. « Casimir and non-Newtonian force experiment (CANNEX) : Review, status, and outlook ». International Journal of Modern Physics A 35, no 02n03 (24 janvier 2020) : 2040008. http://dx.doi.org/10.1142/s0217751x20400084.

Texte intégral
Résumé :
Many theoretical approaches aiming to explain dark matter or dark energy predict variations of Newton’s law of gravity at sub-millimeter separations. In this low-energy domain, force metrology provides an alternative to astronomical observations and high-energy experiments in the search for new physics. The Casimir And Non-Newtonian force EXperiment (CANNEX) has been designed from the ground up to allow for metrological force measurements between truly parallel macroscopic flat plates in the separation range 3–30 micrometer. Benefiting from this geometry, the experiment could potentially reach sensitivities of [Formula: see text]nN/m2 for pressures and [Formula: see text]mN/m3 for pressure gradients. Achieving such precision would enable us to test a variety of non-Newtonian interactions and to unambiguously detect thermal Casimir forces at large separation. In this paper, we review the experimental setup together with proposed improvements, and give an outlook on potential measurements that will be performed once the setup has been rebuilt at its new location in Vienna.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Perković, Dalibor, et Hrvoje Štefančić. « Dark sector unifications : Dark matter-phantom energy, dark matter - constant w dark energy, dark matter-dark energy-dark matter ». Physics Letters B 797 (octobre 2019) : 134806. http://dx.doi.org/10.1016/j.physletb.2019.134806.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Battersby, Stephen. « Dark matter, dark energy, dark… magnetism ? » New Scientist 214, no 2867 (juin 2012) : 36–39. http://dx.doi.org/10.1016/s0262-4079(12)61430-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

de la Macorra, A. « Dark group : dark energy and dark matter ». Physics Letters B 585, no 1-2 (avril 2004) : 17–23. http://dx.doi.org/10.1016/j.physletb.2004.02.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Regmi, Jeevan. « Dark Energy and Dark Matter ». Himalayan Physics 4 (23 décembre 2013) : 91–94. http://dx.doi.org/10.3126/hj.v4i0.9436.

Texte intégral
Résumé :
The new discoveries and evidences in the field of astrophysics have explored new area of discussion each day. It provides an inspiration for the search of new laws and symmetries in nature. One of the interesting issues of the decade is the accelerating universe. Though much is known about universe, still a lot of mysteries are present about it. The new concepts of dark energy and dark matter are being explained to answer the mysterious facts. However it unfolds the rays of hope for solving the various properties and dimensions of space.The Himalayan Physics Vol. 4, No. 4, 2013 Page: 90-94 Uploaded date: 12/23/2013
Styles APA, Harvard, Vancouver, ISO, etc.
6

Caldwell, Robert, et Marc Kamionkowski. « Dark matter and dark energy ». Nature 458, no 7238 (avril 2009) : 587–89. http://dx.doi.org/10.1038/458587a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Comelli, D., M. Pietroni et A. Riotto. « Dark energy and dark matter ». Physics Letters B 571, no 3-4 (octobre 2003) : 115–20. http://dx.doi.org/10.1016/j.physletb.2003.05.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Khuri, Ramzi R. « Dark matter as dark energy ». Physics Letters B 568, no 1-2 (août 2003) : 8–10. http://dx.doi.org/10.1016/j.physletb.2003.06.051.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Edmonds, Douglas, Duncan Farrah, Djordje Minic, Y. Jack Ng et Tatsu Takeuchi. « Modified dark matter : Relating dark energy, dark matter and baryonic matter ». International Journal of Modern Physics D 27, no 02 (janvier 2018) : 1830001. http://dx.doi.org/10.1142/s021827181830001x.

Texte intégral
Résumé :
Modified dark matter (MDM) is a phenomenological model of dark matter, inspired by gravitational thermodynamics. For an accelerating universe with positive cosmological constant ([Formula: see text]), such phenomenological considerations lead to the emergence of a critical acceleration parameter related to [Formula: see text]. Such a critical acceleration is an effective phenomenological manifestation of MDM, and it is found in correlations between dark matter and baryonic matter in galaxy rotation curves. The resulting MDM mass profiles, which are sensitive to [Formula: see text], are consistent with observational data at both the galactic and cluster scales. In particular, the same critical acceleration appears both in the galactic and cluster data fits based on MDM. Furthermore, using some robust qualitative arguments, MDM appears to work well on cosmological scales, even though quantitative studies are still lacking. Finally, we comment on certain nonlocal aspects of the quanta of modified dark matter, which may lead to novel nonparticle phenomenology and which may explain why, so far, dark matter detection experiments have failed to detect dark matter particles.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Lusanna, Luca. « Dark matter : a problem in relativistic metrology ? » Journal of Physics : Conference Series 845 (mai 2017) : 012007. http://dx.doi.org/10.1088/1742-6596/845/1/012007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Konushko, Vladimir. « Universe, Dark Energy and Dark Matter ». Journal of Modern Physics 03, no 11 (2012) : 1819–29. http://dx.doi.org/10.4236/jmp.2012.311227.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Farrar, Glennys R., et P. J. E. Peebles. « Interacting Dark Matter and Dark Energy ». Astrophysical Journal 604, no 1 (20 mars 2004) : 1–11. http://dx.doi.org/10.1086/381728.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

BERTOLAMI, ORFEU. « DARK ENERGY, DARK MATTER AND GRAVITY ». International Journal of Modern Physics D 16, no 12a (décembre 2007) : 2003–12. http://dx.doi.org/10.1142/s0218271807011218.

Texte intégral
Résumé :
We discuss the motivation for high accuracy relativistic gravitational experiments in the solar system and complementary cosmological tests. We focus our attention on the issue of distinguishing a generic scalar theory of gravity as the underlying physical theory from the usual general-relativistic picture, where one expects the presence of fundamental scalar fields associated, for instance, with inflation, dark matter and dark energy.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Robson, B. A. « Dark matter, dark energy and gravity ». International Journal of Modern Physics E 24, no 02 (février 2015) : 1550012. http://dx.doi.org/10.1142/s0218301315500123.

Texte intégral
Résumé :
Within the framework of the Generation Model (GM) of particle physics, gravity is identified with the very weak, universal and attractive residual color interactions acting between the colorless particles of ordinary matter (electrons, neutrons and protons), which are composite structures. This gravitational interaction is mediated by massless vector bosons (hypergluons), which self-interact so that the interaction has two additional features not present in Newtonian gravitation: (i) asymptotic freedom and (ii) color confinement. These two additional properties of the gravitational interaction negate the need for the notions of both dark matter and dark energy.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Kuhlen, Michael, Louis E. Strigari, Andrew R. Zentner, James S. Bullock et Joel R. Primack. « Dark energy and dark matter haloes ». Monthly Notices of the Royal Astronomical Society 357, no 1 (17 janvier 2005) : 387–400. http://dx.doi.org/10.1111/j.1365-2966.2005.08663.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Kalita, Ranku. « Inflation, dark energy, and dark matter ». International Journal of Advanced Astronomy 5, no 1 (8 février 2017) : 26. http://dx.doi.org/10.14419/ijaa.v5i1.7180.

Texte intégral
Résumé :
Inflation leads to omega=1 for the big bang universe, and which is indeed observed. However, two mysterious constituents – dark energy and dark matter – have to be present in the big bang universe for omega = 1. This paper utilizes propositions about the nature of dark energy and dark matter to trace their origins to the contents of the inflationary universe.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Stetsenko, V. Yu, et A. V. Stetsenko. « On dark matter and dark energy ». Litiyo i Metallurgiya (FOUNDRY PRODUCTION AND METALLURGY), no 4 (16 décembre 2020) : 166–68. http://dx.doi.org/10.21122/1683-6065-2020-4-166-168.

Texte intégral
Résumé :
The dark matter hypothesis was created to explain the reason for the preservation of stellar clusters from dispersion. The weak point of this hypothesis is the great age of space, which is 13.8 billion years. Based on experimental data, it is shown that the age of space does not exceed 10 thousand years. In this case, the hypothesis of dark matter is not needed, since stellar clusters cannot scatter in such short cosmic time. The dark energy hypothesis was created to explain the reason for the accelerated expansion of space. The basis for this phenomenon is a large amount of spectral redshift of distant luminous space objects. It is shown that this value is mainly determined by the significant absorption of light energy of distant space objects by a huge amount of intergalactic gas, and not by the movement of these objects. In this case, the hypothesis of dark energy is not needed, and space should not rapidly expand and scatter in space.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Heavens, Alan. « Weak lensing : Dark Matter, Dark Energy and Dark Gravity ». Nuclear Physics B - Proceedings Supplements 194 (octobre 2009) : 76–81. http://dx.doi.org/10.1016/j.nuclphysbps.2009.07.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Capozziello, S., M. De Laurentis, M. Francaviglia et S. Mercadante. « From Dark Energy & ; Dark Matter to Dark Metric ». Foundations of Physics 39, no 10 (27 août 2009) : 1161–76. http://dx.doi.org/10.1007/s10701-009-9332-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

常, 炳功. « Matter-Dark Matter-Dark Energy Are a Whole ». Modern Physics 08, no 05 (2018) : 239–52. http://dx.doi.org/10.12677/mp.2018.85026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Irani, Ardeshir. « Dark Energy, Dark Matter, and the Multiverse ». Journal of High Energy Physics, Gravitation and Cosmology 07, no 01 (2021) : 172–90. http://dx.doi.org/10.4236/jhepgc.2021.71009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Hernandez, Marco. « Theory of Dark Energy and Dark Matter ». Journal of Mathematical Study 48, no 3 (juin 2015) : 199–221. http://dx.doi.org/10.4208/jms.v48n3.15.01.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Delort, Thierry. « Theory of Dark Matter and Dark Energy ». Applied Physics Research 10, no 5 (27 septembre 2018) : 1. http://dx.doi.org/10.5539/apr.v10n5p1.

Texte intégral
Résumé :
In this article, we propose a new model of dark matter. According to this new model, dark matter is a substance, that is a new physical element not constituted of classical particles, called dark substance and filling the Universe. Assuming some very simple physical properties to this dark substance, we theoretically justify the flat rotation curve of galaxies and the baryonic Tully-Fisher’s law. We then study according to our new theory of dark matter  the different possible distributions of dark matter in galaxies and in galaxy clusters, and the velocities of galaxies in galaxy clusters. Then using the new model of dark matter we are naturally led to propose a new geometrical model of Universe, finite, that is different from all geometrical models proposed by the Standard Cosmological Model (SCM). Despite that our Theory of dark matter is compatible with the SCM, we then expose a new Cosmological model based on this new geometrical form of the Universe and on the interpretation of the CMB Rest Frame (CRF), that has not physical interpretation on the SCM and that we will call local Cosmological frame. We then propose 2 possible mathematical models of expansion inside the new Cosmological model. The 1st mathematical model is based on General Relativity as the SCM and gives the same theoretical predictions of distances and of the Hubble’s constant as the SCM. The 2nd mathematical model of expansion of the Universe is mathematically much simpler than the mathematical model of expansion used in the SCM, but we will see that its theoretical predictions are in agreement with astronomical observations. Moreover, this 2nd mathematical model of expansion does not need to introduce the existence of a dark energy contrary to the mathematical model of expansion of the SCM. To end we study the evolution of the temperature of dark substance in the Universe and we make appear the existence of a dark energy, due to our model of dark matter.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Broda, Bogusław, et Michał Szanecki. « Vacuum Pressure, Dark Energy, and Dark Matter ». ISRN Astronomy and Astrophysics 2011 (4 janvier 2011) : 1–3. http://dx.doi.org/10.5402/2011/509836.

Texte intégral
Résumé :
It has been argued that the correct, that is, positive, sign of quantum vacuum energy density, or, more properly, negative sign of quantum vacuum pressure, requires not a very large, and to some extent model-independent, number, for example, ∼100, of additional, undiscovered fundamental bosonic particle species, absent in the standard model. Interpretation of the new particle species in terms of dark matter ones permits to qualitatively, and even quantitatively, connect all the three concepts given in the title.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Nesbet, Robert. « Conformal Gravity : Dark Matter and Dark Energy ». Entropy 15, no 1 (9 janvier 2013) : 162–76. http://dx.doi.org/10.3390/e15010162.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Fritzsch, Harald, et Joan Solà. « Quantum Haplodynamics, Dark Matter, and Dark Energy ». Advances in High Energy Physics 2014 (2014) : 1–6. http://dx.doi.org/10.1155/2014/361587.

Texte intégral
Résumé :
In quantum haplodynamics (QHD) the weak bosons, quarks, and leptons are bound states of fundamental constituents, denoted as haplons. The confinement scale of the associated gauge groupSU(2)his of the order ofΛh≃0.3 TeV. One scalar state has zero haplon number and is the resonance observed at the LHC. In addition, there exist new bound states of haplons with no counterpart in the SM, having a mass of the order of 0.5 TeV up to a few TeV. In particular, a neutral scalar state with haplon number 4 is stable and can provide the dark matter in the universe. The QHD, QCD, and QED couplings can unify at the Planck scale. If this scale changes slowly with cosmic time, all of the fundamental couplings, the masses of the nucleons and of the DM particles, including the cosmological term (or vacuum energy density), will evolve with time. This could explain the dark energy of the universe.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Chernin, A. D., P. Teerikorpi, M. J. Valtonen, V. P. Dolgachev, L. M. Domozhilova et G. G. Byrd. « Dark energy and extended dark matter halos ». Astronomy & ; Astrophysics 539 (17 février 2012) : A4. http://dx.doi.org/10.1051/0004-6361/201117143.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Dil, Emre. « Couplingq-Deformed Dark Energy to Dark Matter ». Advances in High Energy Physics 2016 (2016) : 1–20. http://dx.doi.org/10.1155/2016/9753208.

Texte intégral
Résumé :
We propose a novel coupled dark energy model which is assumed to occur as aq-deformed scalar field and investigate whether it will provide an expanding universe phase. We consider theq-deformed dark energy as coupled to dark matter inhomogeneities. We perform the phase-space analysis of the model by numerical methods and find the late-time accelerated attractor solutions. The attractor solutions imply that the coupledq-deformed dark energy model is consistent with the conventional dark energy models satisfying an acceleration phase of universe. At the end, we compare the cosmological parameters of deformed and standard dark energy models and interpret the implications.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Gehrels, N., et J. K. Cannizzo. « NASAʼs Dark Matter & ; Dark Energy Programs ». Nuclear Physics B - Proceedings Supplements 243-244 (octobre 2013) : 64–69. http://dx.doi.org/10.1016/j.nuclphysbps.2013.09.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Edmonds, Douglas, Djordje Minic et Tatsu Takeuchi. « Dark matter, dark energy and fundamental acceleration ». International Journal of Modern Physics D 29, no 14 (octobre 2020) : 2043030. http://dx.doi.org/10.1142/s0218271820430300.

Texte intégral
Résumé :
We discuss the existence of an acceleration scale in galaxies and galaxy clusters and its relevance for the nature of dark matter. The presence of the same acceleration scale found at very different length scales, and in very different astrophysical objects, strongly supports the existence of a fundamental acceleration scale governing the observed gravitational physics. We comment on the implications of such a fundamental acceleration scale for constraining cold dark matter models as well as its relevance for structure formation to be explored in future numerical simulations.
Styles APA, Harvard, Vancouver, ISO, etc.
31

MANNHEIM, P. « Alternatives to dark matter and dark energy ». Progress in Particle and Nuclear Physics 56, no 2 (avril 2006) : 340–445. http://dx.doi.org/10.1016/j.ppnp.2005.08.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Prescod-Weinstein, Chanda. « Are dark matter and dark energy related ? » New Scientist 245, no 3263 (janvier 2020) : 20. http://dx.doi.org/10.1016/s0262-4079(20)30023-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Huterer, Dragan. « Weak lensing, dark matter and dark energy ». General Relativity and Gravitation 42, no 9 (18 juillet 2010) : 2177–95. http://dx.doi.org/10.1007/s10714-010-1051-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Shafi, Qaisar, Arunansu Sil et Siew-Phang Ng. « Hybrid inflation, dark energy and dark matter ». Physics Letters B 620, no 3-4 (août 2005) : 105–10. http://dx.doi.org/10.1016/j.physletb.2005.06.024.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Takahashi, Fuminobu, et T. T. Yanagida. « Unification of dark energy and dark matter ». Physics Letters B 635, no 2-3 (avril 2006) : 57–60. http://dx.doi.org/10.1016/j.physletb.2006.02.026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Linder, Eric V. « Dark energy and dark matter with SNAP ». Nuclear Physics B - Proceedings Supplements 124 (juillet 2003) : 76–78. http://dx.doi.org/10.1016/s0920-5632(03)02081-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Antonov, Alexander Alexandrovich. « Nature of Dark Matter and Dark Energy ». Journal of Modern Physics 08, no 04 (2017) : 567–82. http://dx.doi.org/10.4236/jmp.2017.84038.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Marra, Valerio. « Coupling dark energy to dark matter inhomogeneities ». Physics of the Dark Universe 13 (septembre 2016) : 25–29. http://dx.doi.org/10.1016/j.dark.2016.04.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Spergel, D. N. « The dark side of cosmology : Dark matter and dark energy ». Science 347, no 6226 (5 mars 2015) : 1100–1102. http://dx.doi.org/10.1126/science.aaa0980.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Mani, Dr P. Seshu. « Experimental Verification of Dark Matter And Dark Energy ». International Journal of Applied Physics 7, no 3 (25 novembre 2020) : 51–53. http://dx.doi.org/10.14445/23500301/ijap-v7i3p108.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Cai, Yi-Fu, Antonino Marcianò, Dong-Gang Wang et Edward Wilson-Ewing. « Bouncing Cosmologies with Dark Matter and Dark Energy ». Universe 3, no 1 (23 décembre 2016) : 1. http://dx.doi.org/10.3390/universe3010001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Kalita, Ranku. « The Nature of Dark Energy and Dark Matter ». International Journal of Astronomy 3, no 1 (1 février 2014) : 18–21. http://dx.doi.org/10.5923/j.astronomy.20140301.02.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Leibovitz, Jacques. « Dark Energy as a Property of Dark Matter ». Journal of Modern Physics 02, no 12 (2011) : 1470–79. http://dx.doi.org/10.4236/jmp.2011.212181.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Demidchenko, Ivan Vladimirovich, et Vladimir Ivanovich Demidchenko. « Dark Matter and Dark Energy (Scientific-Philosophic Apprehension) ». Physics in Higher Education 28, no 1 (2022) : 36–42. http://dx.doi.org/10.54965/16093143_2022_28_1_36.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Kamuntavičius, Gintautas P. « Ground State Nucleon, Dark Energy and Dark Matter ». Journal of Applied Mathematics and Physics 04, no 04 (2016) : 711–19. http://dx.doi.org/10.4236/jamp.2016.44082.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Li, Yuanjie, Lihong Zhang et Peng Dong. « Dark Matter and Dark Energy in the Universe ». JOURNAL OF ADVANCES IN PHYSICS 14, no 1 (31 mars 2018) : 5292–95. http://dx.doi.org/10.24297/jap.v14i1.7164.

Texte intégral
Résumé :
This paper points out that not only all quantum-ghost puzzles occur in the Time Quantum Worm Hole, but also the dark matter in the universe is hidden in it. Dark energy is the contribution of the Planck black hole left behind by the early universe.
Styles APA, Harvard, Vancouver, ISO, etc.
47

R K Dubey, R. K. Dubey, Pratima Ojha et Anil Saini. « Cosmological Model with Dark Energy and Dark Matter ». International Journal of Scientific Research 2, no 5 (1 juin 2012) : 400–401. http://dx.doi.org/10.15373/22778179/may2013/135.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Raha, Sibaji, Shibaji Banerjee, Abhijit Bhattacharyya, Sanjay K. Ghosh, Ernst-Michael Ilgenfritz, Bikash Sinha, Eiichi Takasugi et Hiroshi Toki. « Strangeness, cosmological cold dark matter and dark energy ». Journal of Physics G : Nuclear and Particle Physics 31, no 6 (23 mai 2005) : S857—S862. http://dx.doi.org/10.1088/0954-3899/31/6/028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Paul, BC. « Dark Matter and Dark Energy in the Universe ». BIBECHANA 11 (8 mai 2014) : 8–16. http://dx.doi.org/10.3126/bibechana.v11i0.10374.

Texte intégral
Résumé :
Cosmological and astronomical observations predict that the present Universe is passing through an accelerating phase of expansion. The Universe emerged out of an exponential phase in the very early Universe. The scalar field of the standard model of particle physics when used in cosmology admits such a phase of expansion known as inflation. The most favourable condition for inflation with scalar field to admit an Inflationary scenario is that the potential energy must dominate over the kinetic energy which one obtains with a flat potential. Thereafter the Universe enters into a matter dominated phase when the field oscillates at the minimum of the potential. But it is not possible to accommodate the present accelerating phase in the Einstein’s gravity. It is known from observational analysis that about 73 % matter is responsible for the late phase expansion and 23 % matter called Dark Matter is responsible for a stable galaxy. We discuss here the relevant fields and theories that are useful for describing the late Universe. DOI: http://dx.doi.org/10.3126/bibechana.v11i0.10374 BIBECHANA 11(1) (2014) 8-16
Styles APA, Harvard, Vancouver, ISO, etc.
50

Ma, Yin-Zhe, Yan Gong et Xuelei Chen. « Couplings between holographic dark energy and dark matter ». European Physical Journal C 69, no 3-4 (14 août 2010) : 509–19. http://dx.doi.org/10.1140/epjc/s10052-010-1408-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie