Articles de revues sur le sujet « DAMPE »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : DAMPE.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « DAMPE ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Fowlie, Andrew. « DAMPE squib ? Significance of the 1.4 TeV DAMPE excess ». Physics Letters B 780 (mai 2018) : 181–84. http://dx.doi.org/10.1016/j.physletb.2018.03.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Stolpovskiy, M., X. Wu, A. Tykhonov, M. Deliyergiyev, C. Perrina, M. Muñoz Salinas, D. Droz, A. Ruina et E. Catanzani. « Machine learning-based method of calorimeter saturation correction for helium flux analysis with DAMPE experiment ». Journal of Instrumentation 17, no 06 (1 juin 2022) : P06031. http://dx.doi.org/10.1088/1748-0221/17/06/p06031.

Texte intégral
Résumé :
Abstract DAMPE is a space-borne experiment for the measurement of the cosmic-ray fluxes at energies up to around 100 TeV per nucleon. At energies above several tens of TeV, the electronics of DAMPE calorimeter would saturate, leaving certain bars with no energy recorded. In the present work we discuss the application of machine learning techniques for the treatment of DAMPE data, to compensate the calorimeter energy lost by saturation.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Azzarello, P., G. Ambrosi, R. Asfandiyarov, P. Bernardini, B. Bertucci, A. Bolognini, F. Cadoux et al. « The DAMPE silicon–tungsten tracker ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 831 (septembre 2016) : 378–84. http://dx.doi.org/10.1016/j.nima.2016.02.077.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Wang, S. X., J. J. Zang, W. Jiang, S. J. Lei, C. N. Luo, Z. L. Xu et J. Chang. « A Study on Monte Carlo Simulation of the Radiation Environment above GeV at the DAMPE Orbit ». Research in Astronomy and Astrophysics 22, no 4 (17 mars 2022) : 045011. http://dx.doi.org/10.1088/1674-4527/ac550e.

Texte intégral
Résumé :
Abstract The Dark Matter Particle Explorer (DAMPE) has been undergoing a stable on-orbit operation for more than 6 yr and acquired observations of over 11 billion events. A better understanding of the overall radiation environment of the DAMPE orbit is crucial for both simulation data production and flight data analysis. In this work, we study the radiation environment at low Earth orbit and develop a simulation software package using the framework of ATMNC3, in which state-of-the-art full 3D models of the Earth’s atmospheric and magnetic-field configurations are integrated. We consider in our Monte Carlo procedure event-by-event propagation of cosmic rays in the geomagnetic field and their interaction with the Earth’s atmosphere, focusing on the particles above GeV that are able to trigger the DAMPE data acquisition system. We compare the simulation results with the cosmic-ray electron and positron (CRE) flux measurements made by DAMPE. The overall agreement on both the spectral and angular distribution of the CRE flux demonstrates that our simulation is well established. Our software package could be of more general usage for simulation of the radiation environment of low Earth orbit at various altitudes.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Bernardini, Paolo. « Main scientific results of the DAMPE mission ». EPJ Web of Conferences 209 (2019) : 01048. http://dx.doi.org/10.1051/epjconf/201920901048.

Texte intégral
Résumé :
DAMPE (DArk Matter Particle Explorer) is a satellite-born experiment, resulting from the collaboration of Chinese, Italian, and Swiss institutions. Since December 2015, DAMPE flights at the altitude of 500 km and collects data smoothly. The detector is made of four sub-detectors: top layers of plastic scintillators, a silicon-tungsten tracker, a BGO calorimeter (32 radiation lengths), and a bottom boron-doped scintillator to detect delayed neutrons. The main goal of the experiment is the search for indirect signals of Dark Matter in the electron and photon spectra with energies up to 10 TeV. Furthermore DAMPE studies cosmic charged and gamma radiation. The calorimeter depth and the large acceptance allow to measure cosmic ray fluxes in the range from 20 GeV up to hundreds of TeV. An overview of the latest results about light component (p+He) of charged cosmic rays, gamma astronomy and electron and positron spectrum will be presented.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Yu, Yuhong, Zhiyu Sun, Hong Su, Yaqing Yang, Jie Liu, Jie Kong, Guoqing Xiao et al. « The plastic scintillator detector for DAMPE ». Astroparticle Physics 94 (septembre 2017) : 1–10. http://dx.doi.org/10.1016/j.astropartphys.2017.06.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Lu, Tong-suo, Shi-jun Lei, Jing-jing Zang, Jin Chang et Jian Wu. « Study of Track Reconstruction for DAMPE ». Chinese Astronomy and Astrophysics 41, no 3 (juillet 2017) : 455–70. http://dx.doi.org/10.1016/j.chinastron.2017.08.012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Wang, Chi, Dong Liu, Yifeng Wei, Zhiyong Zhang, Yunlong Zhang, Xiaolian Wang, Zizong Xu et al. « Offline software for the DAMPE experiment ». Chinese Physics C 41, no 10 (28 septembre 2017) : 106201. http://dx.doi.org/10.1088/1674-1137/41/10/106201.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Dai, Hao-Ting, Jing-Jing Zang, Ying Wang, Chuan-Ning Luo, Yun-Long Zhang, Zhi-Yong Zhang, Yi-Feng Wei et al. « Method of Separating Cosmic-Ray Positrons from Electrons in the DAMPE Experiment ». Research in Astronomy and Astrophysics 22, no 3 (18 février 2022) : 035012. http://dx.doi.org/10.1088/1674-4527/ac47a8.

Texte intégral
Résumé :
Abstract A method of identifying positron/electron species from the cosmic rays was studied in the DArk Matter Particle Explorer (DAMPE) experiment. As there is no onboard magnet on the satellite, the different features imposed by the geomagnetic field on these two species were exploited for the particle identification. Application of this method to the simulation of on-orbit electrons/positrons/protons and the real flight data proves that separately measuring the CR positrons/electrons with DAMPE is feasible, though limited by the field of view for the present observation data. Further analysis on the positron flux with this method can be expected in the future.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Mitri, I. De, A. Parenti et L. Silveri. « Selected Results from the DAMPE Space Mission ». Physics of Atomic Nuclei 84, no 6 (novembre 2021) : 947–55. http://dx.doi.org/10.1134/s106377882113007x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Fusco, Piergiorgio. « The DAMPE experiment and its latest results ». Journal of Physics : Conference Series 1390 (novembre 2019) : 012063. http://dx.doi.org/10.1088/1742-6596/1390/1/012063.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

De Mitri, Ivan. « The DAMPE experiment : first data from space ». EPJ Web of Conferences 136 (2017) : 02010. http://dx.doi.org/10.1051/epjconf/201713602010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

De Benedittis, Antonio. « Proton energy spectrum with the DAMPE experiment ». EPJ Web of Conferences 209 (2019) : 01030. http://dx.doi.org/10.1051/epjconf/201920901030.

Texte intégral
Résumé :
The DAMPE (DArk Matter Particle Explorer) experiment, in orbit since December 17th 2015, is a space mission whose main purpose is the detection of cosmic electrons and photons up to energies of 10 TeV, in order to identify possible evidence of Dark Matter in their spectra. Furthermore it aims to measure the spectra and the elemental composition of the galactic cosmic rays nuclei up to the energy of hundreds of TeV. The proton analysis and the flux with kinetic energy ranging from 50 GeV up to 100 TeV, at the end of two years of data taking, will be presented and discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Bernardini, Paolo. « Main scientific results of the DAMPE mission ». Journal of Physics : Conference Series 1181 (février 2019) : 012043. http://dx.doi.org/10.1088/1742-6596/1181/1/012043.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Bernardini, Paolo. « First data from the DAMPE space mission ». Nuclear and Particle Physics Proceedings 291-293 (octobre 2017) : 59–65. http://dx.doi.org/10.1016/j.nuclphysbps.2017.06.014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Ming, He, Ma Tao, Chang Jin, Zhang Yan, Huang Yong-yi, Zang Jing-jing, Wu Jian et Dong Tie-kuang. « GEANT4 Simulation of Neutron Detector for DAMPE ». Chinese Astronomy and Astrophysics 40, no 4 (octobre 2016) : 474–82. http://dx.doi.org/10.1016/j.chinastron.2016.10.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Wang, Pei-Long, Yun-Long Zhang, Xiao-Lian Wang et Zi-Zong Xu. « Magnetic shielding for DAMPE electromagnetic calorimeter PMTs ». Chinese Physics C 38, no 8 (août 2014) : 086002. http://dx.doi.org/10.1088/1674-1137/38/8/086002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Chan, Man Ho, et Chak Man Lee. « Origin of the DAMPE 1.4 TeV peak ». Monthly Notices of the Royal Astronomical Society : Letters 486, no 1 (2 mai 2019) : L85—L88. http://dx.doi.org/10.1093/mnrasl/slz062.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Gargano, Fabio. « The DAMPE experiment : 2 year in orbit ». Journal of Physics : Conference Series 934 (décembre 2017) : 012015. http://dx.doi.org/10.1088/1742-6596/934/1/012015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Belotsky, Konstantin, Airat Kamaletdinov, Maxim Laletin et Maxim Solovyov. « The DAMPE excess and gamma-ray constraints ». Physics of the Dark Universe 26 (décembre 2019) : 100333. http://dx.doi.org/10.1016/j.dark.2019.100333.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Xiang, Yu Hua, Jia Yuan Zhang et Xiao Hui Zhang. « Research of Cold Test in 170t/h Tangentially Fired Boiler ». Advanced Materials Research 516-517 (mai 2012) : 180–86. http://dx.doi.org/10.4028/www.scientific.net/amr.516-517.180.

Texte intégral
Résumé :
The characteristics of the WGZ170/9.8-3 pulverized coal boiler were obtained based on cold test,Including the air velocity distribution in tangential firing boiler and the relation between air distribution with opening of each secondary air dampe,The test results had determined that the baffle of blower at around 40% and two parallel draft fan about 45% were relatively appropriate. and the air distribution and opening of each secondary air dampe and balancing the distribution of primary air and second air along the width direction of the boiler hearth were confirmed through test,and the aerodynamic field inside the boiler was investigated based on the tie-floating test.and good aerodynamic field can be obtained after distributing the primary air and second air reasonably,which guarantee the ignition and stable operation of the boiler.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Alemanno, Francesca. « The DAMPE Space Mission : Status and Main Results ». Moscow University Physics Bulletin 77, no 2 (avril 2022) : 280–83. http://dx.doi.org/10.3103/s0027134922020060.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Tykhonov, A., G. Ambrosi, R. Asfandiyarov, P. Azzarello, P. Bernardini, B. Bertucci, A. Bolognini et al. « In-flight performance of the DAMPE silicon tracker ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 924 (avril 2019) : 309–15. http://dx.doi.org/10.1016/j.nima.2018.06.036.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Dong, Yi-Fan, Fei Zhang, Rui Qiao, Wen-Xi Peng, Rui-Rui Fan, Ke Gong, Di Wu et Huan-Yu Wang. « DAMPE silicon tracker on-board data compression algorithm ». Chinese Physics C 39, no 11 (novembre 2015) : 116202. http://dx.doi.org/10.1088/1674-1137/39/11/116202.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Wu, Li-Bo, Yun-Long Zhang, Zhi-Yong Zhang, Yi-Feng Wei, Si-Cheng Wen, Hao-Ting Dai, Cheng-Ming Liu, Xiao-Lian Wang, Zi-Zong Xu et Guang-Shun Huang. « Energy correction based on fluorescence attenuation of DAMPE ». Research in Astronomy and Astrophysics 20, no 8 (août 2020) : 118. http://dx.doi.org/10.1088/1674-4527/20/8/118.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

HU Yiming, CHANG Jin, CHEN Dengyi, LIU Shubin, FENG Changqing et ZHANG Yunlong. « Thermal Design and Validation of DAMPE BGO Calorimeter ». Chinese Journal of Space Science 37, no 1 (2017) : 114. http://dx.doi.org/10.11728/cjss2017.01.114.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Catanzani, E., G. Ambrosi, P. Azzarello, C. Perrina, M. Iónica, A. Tykhonov et X. Wu. « Study of the performances of the DAMPE silicon-tungsten tracker after five years of mission ». Journal of Physics : Conference Series 2374, no 1 (1 novembre 2022) : 012067. http://dx.doi.org/10.1088/1742-6596/2374/1/012067.

Texte intégral
Résumé :
DAMPE (DArk Matter Particle Explorer) is a satellite-based experiment launched in December 2015 and smoothly taking data after five years of mission. The Silicon-Tungsten Tracker (STK) is characterized by 6 double layers of silicon micro-strip detectors, for a total detection area of 7 m2, and three 1 mm thick tungsten plates, placed in the mechanical support structure, aimed to the photon conversion in e± pairs. The STK has a double role: precise reconstruction of the track of charged particles with a spatial resolution around 40 μm for most incident angles of the incoming particles, identification of the charge of the incoming cosmic rays. The STK performances are excellent after five years of continuous operation in space: in this contribution the STK in-orbit calibration and performances during the whole DAMPE mission will be presented.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Okada, Nobuchika, et Osamu Seto. « DAMPE excess from decaying right-handed neutrino dark matter ». Modern Physics Letters A 33, no 27 (2 septembre 2018) : 1850157. http://dx.doi.org/10.1142/s0217732318501572.

Texte intégral
Résumé :
The flux of high-energy cosmic-ray electrons plus positrons recently measured by the DArk Matter Particle Explorer (DAMPE) exhibits a tentative peak excess at an energy of around 1.4 TeV. In this paper, we consider the minimal gauged U(1)[Formula: see text] model with a right-handed neutrino (RHN) dark matter (DM) and interpret the DAMPE peak with a late-time decay of the RHN DM into [Formula: see text]. We find that a DM lifetime [Formula: see text] can fit the DAMPE peak with a DM mass [Formula: see text]. This favored lifetime is close to the current bound on it by Fermi-LAT, our decaying RHN DM can be tested, once the measurement of cosmic gamma ray flux is improved. The RHN DM communicates with the Standard Model particles through the U(1)[Formula: see text] gauge boson ([Formula: see text] boson), and its thermal relic abundance is controlled by only three free parameters: [Formula: see text], the U(1)[Formula: see text] gauge coupling [Formula: see text], and the [Formula: see text] boson mass [Formula: see text]. For [Formula: see text], the rest of the parameters are restricted to be [Formula: see text] and [Formula: see text], in order to reproduce the observed DM relic density and to avoid the Landau pole for running [Formula: see text] below the Planck scale. This allowed region will be tested by the search for a [Formula: see text] boson resonance at the future Large Hadron Collider.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Babynets, Nelya. « Death as Poetic Device in John Donne’s The Dampe ». IAFOR Journal of Arts & ; Humanities 7, no 1 (6 juin 2020) : 3–16. http://dx.doi.org/10.22492/ijah.7.1.01.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Tykhonov, A., V. Gallo, X. Wu et S. Zimmer. « Reconstruction software of the silicon tracker of DAMPE mission ». Journal of Physics : Conference Series 898 (octobre 2017) : 042031. http://dx.doi.org/10.1088/1742-6596/898/4/042031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Qiao, Rui, Wen-Xi Peng, G. Ambrosi, R. Asfandiyarov, P. Azzarello, P. Bernardini, B. Bertucci et al. « A charge reconstruction algorithm for DAMPE silicon microstrip detectors ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 935 (août 2019) : 24–29. http://dx.doi.org/10.1016/j.nima.2019.04.036.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Zhang, Yongjie, Zhiyu Sun, Yuhong Yu, Jianhua Guo, Fang Fang, Yong Zhou, Zhaoming Wang, Yapeng Zhang et Bitao Hu. « A survey of space radiation damage to DAMPE-PSD ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 971 (août 2020) : 164112. http://dx.doi.org/10.1016/j.nima.2020.164112.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Wang, Zhao-Min, Yu-Hong Yu, Zhi-Yu Sun, Ke Yue, Duo Yan, Yong-Jie Zhang, Yong Zhou, Fang Fang, Wen-Xue Huang et Jun-Ling Chen. « Temperature dependence of the plastic scintillator detector for DAMPE ». Chinese Physics C 41, no 1 (janvier 2017) : 016001. http://dx.doi.org/10.1088/1674-1137/41/1/016001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Parenti, Andrea. « Galactic cosmic rays : latest results from the DAMPE mission ». Journal of Physics : Conference Series 2429, no 1 (1 février 2023) : 012003. http://dx.doi.org/10.1088/1742-6596/2429/1/012003.

Texte intégral
Résumé :
Abstract The space-based DAMPE (DArk Matter Particle Explorer) particle detector has been taking data for more than 6 years since its successful launch in December 2015. Its main scientific goals include the indirect search of Dark Matter signatures in the cosmic lepton spectra, the study of Galactic Cosmic Rays up to energies of hundreds of TeV and high-energy gamma ray astronomy. This talk will focus on Galactic Cosmic Rays and the measurement of their spectra, fundamental to investigate the mechanisms of acceleration at their sources and propagation through the interstellar medium. The most recent results on Proton and Helium, which revealed new spectral features, will be highlighted. Ongoing analyses regarding the cosmic ray light component, medium and heavy mass nuclei will be discussed alongside studies on the so-called secondary cosmic rays.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Bao, Yiwei, Yang Chen et Siming Liu. « Is PSR J0855−4644 responsible for the 1.4 TeV electron spectral bump hinted by DAMPE ? » Monthly Notices of the Royal Astronomical Society 500, no 4 (27 octobre 2020) : 4573–77. http://dx.doi.org/10.1093/mnras/staa3311.

Texte intégral
Résumé :
ABSTRACT DAMPE observation on the cosmic ray electron spectrum hints a narrow excess at ∼1.4 TeV. Although the excess can be ascribed to dark matter particles, pulsars and pulsar wind nebulae are believed to be more natural astrophysical origins: electrons injected from nearby pulsars at their early ages can form a bump-like feature in the spectrum due to radiative energy losses. In this paper, with a survey of nearby pulsars, we filter out four pulsars that may have notable contributions to ∼1.4 TeV cosmic ray electrons. Among them, PSR J0855−4644 has a spin-down luminosity more than 50 times higher than others and presumably dominates the electron fluxes from them. X-ray observations on the inner compact part (which may represent a tunnel for the transport of electrons from the pulsar) of PWN G267.0−01.0 are then used to constrain the spectral index of high-energy electrons injected by the pulsar. We show that high-energy electrons released by PSR J0855−4644 could indeed reproduce the 1.4 TeV spectral feature hinted by the DAMPE with reasonable parameters.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Dong, J. N., Y. L. Zhang, Z. Y. Zhang, Y. F. Wei, L. B. Wu, C. Wang, Z. T. Shen et al. « Quality control of mass production of PMT modules for DAMPE ». Journal of Instrumentation 12, no 05 (26 mai 2017) : T05004. http://dx.doi.org/10.1088/1748-0221/12/05/t05004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Yue, Chuan, Peng-Xiong Ma, Margherita Di Santo, Li-Bo Wu, Francesca Alemanno, Paolo Bernardini, Dimitrios Kyratzis, Guan-Wen Yuan, Qiang Yuan et Yun-Long Zhang. « Correction method for the readout saturation of the DAMPE calorimeter ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 984 (décembre 2020) : 164645. http://dx.doi.org/10.1016/j.nima.2020.164645.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Wei, Yifeng, Zhiyong Zhang, Yunlong Zhang, Chi Wang, Sicheng Wen, Jianing Dong, Zhiying Li et al. « Performance of the BGO Detector Element of the DAMPE Calorimeter ». IEEE Transactions on Nuclear Science 63, no 2 (avril 2016) : 548–51. http://dx.doi.org/10.1109/tns.2016.2541690.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Geng, Chao-Qiang, Da Huang et Lu Yin. « Multicomponent dark matter in the light of CALET and DAMPE ». Nuclear Physics B 959 (octobre 2020) : 115153. http://dx.doi.org/10.1016/j.nuclphysb.2020.115153.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Wang, Yuan-Peng, Si-Cheng Wen, Wei Jiang, Chuan Yue, Zhi-Yong Zhang, Yi-Feng Wei, YunLong Zhang, Jing-Jing Zang et Jian Wu. « Temperature effects on MIPs in the BGO calorimeters of DAMPE ». Chinese Physics C 41, no 10 (28 septembre 2017) : 106001. http://dx.doi.org/10.1088/1674-1137/41/10/106001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Zhao, Yi, Xiao-Jun Bi, Su-Jie Lin et Peng-Fei Yin. « Nearby dark matter subhalo that accounts for the DAMPE excess ». Chinese Physics C 43, no 8 (16 juillet 2019) : 085101. http://dx.doi.org/10.1088/1674-1137/43/8/085101.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Ma, Peng-Xiong, Yong-Jie Zhang, Ya-Peng Zhang, Yao Li, Jing-Jing Zang, Xiang Li, Tie-Kuang Dong et al. « A method for aligning the plastic scintillator detector on DAMPE ». Research in Astronomy and Astrophysics 19, no 6 (juin 2019) : 082. http://dx.doi.org/10.1088/1674-4527/19/6/82.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Xu, Zhihui, Xiang Li, Mingyang Cui, Chuan Yue, Wei Jiang, Wenhao Li et Qiang Yuan. « An Unsupervised Machine Learning Method for Electron–Proton Discrimination of the DAMPE Experiment ». Universe 8, no 11 (30 octobre 2022) : 570. http://dx.doi.org/10.3390/universe8110570.

Texte intégral
Résumé :
Galactic cosmic rays are mostly made up of energetic nuclei, with less than 1% of electrons (and positrons). Precise measurement of the electron and positron component requires a very efficient method to reject the nuclei background, mainly protons. In this work, we develop an unsupervised machine learning method to identify electrons and positrons from cosmic ray protons for the Dark Matter Particle Explorer (DAMPE) experiment. Compared with the supervised learning method used in the DAMPE experiment, this unsupervised method relies solely on real data except for the background estimation process. As a result, it could effectively reduce the uncertainties from simulations. For three energy ranges of electrons and positrons, 80–128 GeV, 350–700 GeV, and 2–5 TeV, the residual background fractions in the electron sample are found to be about (0.45 ± 0.02)%, (0.52 ± 0.04)%, and (10.55 ± 1.80)%, and the background rejection power is about (6.21 ± 0.03) ×104, (9.03 ± 0.05) ×104, and (3.06 ± 0.32) ×104, respectively. This method gives a higher background rejection power in all energy ranges than the traditional morphological parameterization method and reaches comparable background rejection performance compared with supervised machine learning methods.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Droz, D., A. Tykhonov, X. Wu, F. Alemanno, G. Ambrosi, E. Catanzani, M. D. Santo, D. Kyratzis et S. Zimmer. « A neural network classifier for electron identification on the DAMPE experiment ». Journal of Instrumentation 16, no 07 (1 juillet 2021) : P07036. http://dx.doi.org/10.1088/1748-0221/16/07/p07036.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Wei, Y. F., Z. Y. Zhang, Y. L. Zhang, S. C. Wen, C. Wang, Z. Y. Li, C. Q. Feng et al. « Temperature dependence calibration and correction of the DAMPE BGO electromagnetic calorimeter ». Journal of Instrumentation 11, no 07 (5 juillet 2016) : T07003. http://dx.doi.org/10.1088/1748-0221/11/07/t07003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Ayazi, Seyed Yaser, et Ahmad Mohamadnejad. « DAMPE excess from leptophilic vector dark matter : a model-independent approach ». Journal of Physics G : Nuclear and Particle Physics 47, no 9 (22 juillet 2020) : 095003. http://dx.doi.org/10.1088/1361-6471/ab94cd.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Wei, Yifeng, Yunlong Zhang, Zhiyong Zhang, Libo Wu, Sicheng Wen, Haoting Dai, Chenming Liu et al. « Performance of the DAMPE BGO calorimeter on the ion beam test ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 922 (avril 2019) : 177–84. http://dx.doi.org/10.1016/j.nima.2018.12.036.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Zhang, Yongjie, Yuhong Yu, Zhiyu Sun, Yong Zhou, Fang Fang, Hongyun Zhao, Jie Kong et al. « Results of heavy ion beam tests of DAMPE plastic scintillator detector ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 953 (février 2020) : 163139. http://dx.doi.org/10.1016/j.nima.2019.163139.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Zhang, Fei, Wen-Xi Peng, Ke Gong, Di Wu, Yi-Fan Dong, Rui Qiao, Rui-Rui Fan et al. « Design of the readout electronics for the DAMPE Silicon Tracker detector ». Chinese Physics C 40, no 11 (novembre 2016) : 116101. http://dx.doi.org/10.1088/1674-1137/40/11/116101.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Zhang, De-Liang, Chang-Qing Feng, Jun-Bin Zhang, Qi Wang, Si-Yuan Ma, Zhong-Tao Shen, Di Jiang et al. « Onboard calibration circuit for the DAMPE BGO calorimeter front-end electronics ». Chinese Physics C 40, no 5 (mai 2016) : 056101. http://dx.doi.org/10.1088/1674-1137/40/5/056101.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie