Thèses sur le sujet « D-Manifolds »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleures thèses pour votre recherche sur le sujet « D-Manifolds ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
ROSSI, FEDERICO ALBERTO. « D-Complex Structures on Manifolds : Cohomological properties and deformations ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2013. http://hdl.handle.net/10281/41976.
Texte intégralWe study some properties of Double Manifold, or D-Manifolds. In particular, we study of deformations of D-structures and of CR D-structures, and we found a condition which is equivalent to the classical Maurer-Cartan equation describing the integrability of the deformations. We also focus on the cohomological properties of D-Manifold, showing that a del-delbar-Lemma can not hold for any compact D-Manifold. We also state some properties of special subgroups of de-Rham cohomology, studing also their behaviour under small deformations. Finally, a result by Harvey and Lawson about the minimal Lagrangian Submanifold of a D-Kahler Ricci-flat manifold is generalized to the case of a special almost D-complex symplectic manifold.
Gdura, Youssef Omran. « C++ software for computing and visualizing 2-D manifolds using Henderson's algorithm ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/MQ64078.pdf.
Texte intégralGoranci, Roberto. « Parallelizable manifold compactifications of D=11 Supergravity ». Thesis, Uppsala universitet, Teoretisk fysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-308085.
Texte intégralSchopka, Sven [Verfasser]. « Noncommutative Einstein Manifolds / Sven Schopka ». Aachen : Shaker, 2007. http://d-nb.info/1166510778/34.
Texte intégralStecker, Florian [Verfasser], et Anna [Akademischer Betreuer] Wienhard. « Domains of discontinuity of Anosov representations in flag manifolds and oriented flag manifolds / Florian Stecker ; Betreuer : Anna Wienhard ». Heidelberg : Universitätsbibliothek Heidelberg, 2019. http://d-nb.info/1191898083/34.
Texte intégralJoumaah, Malek [Verfasser]. « Automorphisms of irreducible symplectic manifolds / Malek Joumaah ». Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2015. http://d-nb.info/1068920580/34.
Texte intégralHasselmann, Stefan [Verfasser]. « Spectral triples on Carnot manifolds / Stefan Hasselmann ». Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2014. http://d-nb.info/1050990099/34.
Texte intégralViaggi, Gabriele [Verfasser]. « Geometry of random 3-manifolds / Gabriele Viaggi ». Bonn : Universitäts- und Landesbibliothek Bonn, 2020. http://d-nb.info/1208764896/34.
Texte intégralSpindeler, Wolfgang Lorenz [Verfasser], et Burkhard [Akademischer Betreuer] Wilking. « S 1-actions on 4-manifolds and fixed point homogeneous manifolds of nonnegative curvature / Wolfgang Lorenz Spindeler ; Betreuer : Burkhard Wilking ». Münster : Universitäts- und Landesbibliothek Münster, 2014. http://d-nb.info/1138284262/34.
Texte intégralBehrens, Stefan [Verfasser]. « Smooth 4-Manifolds and Surface Diagrams / Stefan Behrens ». Bonn : Universitäts- und Landesbibliothek Bonn, 2014. http://d-nb.info/1054044171/34.
Texte intégralDemleitner, Andreas [Verfasser], et Fabrizio [Akademischer Betreuer] Catanese. « On Hyperelliptic Manifolds / Andreas Demleitner ; Betreuer : Fabrizio Catanese ». Bayreuth : Universität Bayreuth, 2020. http://d-nb.info/1218595973/34.
Texte intégralRohde, Jan Christian. « Cyclic coverings, Calabi-Yau manifolds and complex multiplication ». Berlin Heidelberg Springer, 2007. http://d-nb.info/993987613/04.
Texte intégralShannon, Mario. « Dehn surgeries and smooth structures on 3-dimensional transitive Anosov flows ». Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCK035.
Texte intégralThe present thesis is about Dehn surgeries and smooth structures associated with transitive Anosov flows in dimension three. Anosov flows constitute a very important class of dynamical systems, because of its persistent chaotic behaviour, as well as for its rich interaction with the topology of the ambient space. Even if a lot is known about the dynamical and ergodic properties of these systems, there is not a clear understanding about how to classify its different orbital equivalence classes. Until now, the biggest progress has been done in dimension three, where there is a family of techniques intended for the construction of Anosov flows called surgeries.During the realization of this thesis, in a first time we have been interested in a particular surgery method, known as the Goodman surgery. This method consists in make a Dehn surgery on a chosen periodic orbit, but adapted to the flow, in such a way to obtain a new manifold equipped with an Anosov flow. For making this surgery, one of the parameters that has to be chosen is an embedded surface in the 3-manifold and a diffeomorphism defined on it. Thus, the parameter space is, a priori, of infinite dimension and it is not easy to have control on the orbital equivalence class of the obtained flow. There exists a second method, that can be interpreted as an infinitesimal version of the previous one, known as the Fried surgery. It consists in making a blow-up of the flow along the periodic orbit, obtaining in this way a flow in a manifold with boundary, for then blowing-down the boundary component in a non-trivial way and produce a new flow. This surgery produces flows defined in a unique way, but they are not equipped with a natural uniformly hyperbolic structure. They are, by construction, topological Anosov flows.Our contribution is to show that, if we assume that the flow is transitive, then a Goodman surgery or a Fried surgery performed on a periodic orbit produce orbitally equivalent flows, for the same choice of integer parameters.In a second time, we have been interested for a more abstract question, but which is also related to some technical issues in the construction of hyperbolic flows. It is the problem of determining if every topologically Anosov flow (i.e. expansive and satisfying the Bowen shadowing property) correspond to a smooth hyperbolic flow, up to orbital equivalence. In the particular case that the flow is transitive, it has been known that there exists a non-uniformly hyperbolic structure defined in the complement of a finite set of periodic orbits. The main difficulty is the construction of (global) hyperbolic models associated to the original flow.In this setting, our contribution is to show that every transitive topologically Anosov flow on a closed manifold is orbital equivalent to a smooth Anosov flow
Montcouquiol, Grégoire. « Déformations de métriques Einstein sur des variétés à singularités coniques ». Toulouse 3, 2005. http://www.theses.fr/2005TOU30205.
Texte intégralStarting with a compact hyperbolic cone-manifold of dimension n>2, we study the deformations of the metric in order to get Einstein cone-manifolds. If the singular locus is a closed codimension 2 submanifold and all cone angles are smaller than 2pi, we show that there is no non-trivial infinitesimal Einstein deformations preserving the cone angles. This result can be interpreted as a higher-dimensional case of the celebrated Hodgson and Kerckhoff's theorem on deformations of hyperbolic 3-cone-manifolds. If all cone angles are smaller than pi, we also give a construction which associates to any variation of the angles a corresponding infinitesimal Einstein deformation
Kröncke, Klaus [Verfasser], et Christian [Akademischer Betreuer] Bär. « Stability of Einstein Manifolds / Klaus Kröncke. Betreuer : Christian Bär ». Potsdam : Universitätsbibliothek der Universität Potsdam, 2014. http://d-nb.info/1047487462/34.
Texte intégralNölle, Christoph [Verfasser]. « Heterotic supergravity on manifolds with Killing spinors / Christoph Nölle ». Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2012. http://d-nb.info/1022754483/34.
Texte intégralAbczynski, Anna [Verfasser]. « On the Classification of Cohomology Bott Manifolds / Anna Abczynski ». Bonn : Universitäts- und Landesbibliothek Bonn, 2013. http://d-nb.info/1045276685/34.
Texte intégralDoll, Moritz [Verfasser]. « Fourier integral operators on non-compact manifolds / Moritz Doll ». Hannover : Gottfried Wilhelm Leibniz Universität Hannover, 2018. http://d-nb.info/116631393X/34.
Texte intégralCaspart, Sven [Verfasser], et F. [Akademischer Betreuer] Herrlich. « Singularities of Translation Manifolds / Sven Caspart ; Betreuer : F. Herrlich ». Karlsruhe : KIT-Bibliothek, 2021. http://d-nb.info/122951466X/34.
Texte intégralOrtiz, Julián [Verfasser], et Anton [Akademischer Betreuer] Schiela. « Constrained Optimization on Manifolds / Julián Ortiz ; Betreuer : Anton Schiela ». Bayreuth : Universität Bayreuth, 2020. http://d-nb.info/1223982033/34.
Texte intégralZergänge, Norman [Verfasser]. « Convergence of Riemannian manifolds with critical curvature bounds / Norman Zergänge ». Magdeburg : Universitätsbibliothek, 2017. http://d-nb.info/1141230488/34.
Texte intégralUebele, Peter [Verfasser], et Kai [Akademischer Betreuer] Cieliebak. « Symplectic homology of Brieskorn manifolds / Peter Uebele ; Betreuer : Kai Cieliebak ». Augsburg : Universität Augsburg, 2016. http://d-nb.info/1120923689/34.
Texte intégralEmmerich, Patrick [Verfasser]. « Rigidity of Complete Riemannian Manifolds without Conjugate Points / Patrick Emmerich ». Aachen : Shaker, 2013. http://d-nb.info/1049384369/34.
Texte intégralSmirnov, Maxim [Verfasser]. « Gromov-Witten correspondences, derived categories, and Frobenius manifolds / Maxim Smirnov ». Bonn : Universitäts- und Landesbibliothek Bonn, 2013. http://d-nb.info/1044868589/34.
Texte intégralTormählen, Maike [Verfasser]. « Yang-Mills Solutions on Manifolds with G-Structure / Maike Tormählen ». München : Verlag Dr. Hut, 2015. http://d-nb.info/1079768394/34.
Texte intégralEwert, Eske Ellen [Verfasser]. « Index theory and groupoids for filtered manifolds / Eske Ellen Ewert ». Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2020. http://d-nb.info/1224100301/34.
Texte intégralLyu, Xiaojing [Verfasser], et Bert-Wolfgang [Akademischer Betreuer] Schulze. « Operators on singular manifolds / Xiaojing Lyu ; Betreuer : Bert-Wolfgang Schulze ». Potsdam : Universität Potsdam, 2016. http://d-nb.info/1218401575/34.
Texte intégralSaha, Arpan [Verfasser], et Vicente [Akademischer Betreuer] Cortés. « Twists of quaternionic Kähler manifolds / Arpan Saha ; Betreuer : Vicente Cortés ». Hamburg : Staats- und Universitätsbibliothek Hamburg, 2020. http://d-nb.info/1214811701/34.
Texte intégralHaßler, Falk Verfasser], et Dieter [Akademischer Betreuer] [Lüst. « Double field theory on group manifolds / Falk Haßler. Betreuer : Dieter Lüst ». München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2015. http://d-nb.info/1074358732/34.
Texte intégralStromenger, Christian [Verfasser]. « Sasakian manifolds : differential forms, curvature and conformal killing forms / Christian Stromenger ». Köln : Universitäts- und Stadtbibliothek Köln, 2010. http://d-nb.info/101380564X/34.
Texte intégralOdathuparambil, Sonja [Verfasser], Ulrich [Akademischer Betreuer] Reif et Oleg [Akademischer Betreuer] Davydov. « Ambient Spline Approximation on Manifolds / Sonja Odathuparambil ; Ulrich Reif, Oleg Davydov ». Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2016. http://d-nb.info/1114394955/34.
Texte intégralSu, Feng [Verfasser], et Anton [Akademischer Betreuer] Deitmar. « Totally geodesic periods over hyperbolic manifolds / Feng Su ; Betreuer : Anton Deitmar ». Tübingen : Universitätsbibliothek Tübingen, 2015. http://d-nb.info/1197058095/34.
Texte intégralEngel, Alexander [Verfasser], et Bernhard [Akademischer Betreuer] Hanke. « Indices of pseudodifferential operators on open manifolds / Alexander Engel. Betreuer : Bernhard Hanke ». Augsburg : Universität Augsburg, 2015. http://d-nb.info/1077704658/34.
Texte intégralvon, Deylen Stefan Wilhelm [Verfasser]. « Numerical Approximation in Riemannian Manifolds by Karcher Means / Stefan Wilhelm von Deylen ». Berlin : Freie Universität Berlin, 2015. http://d-nb.info/1066645108/34.
Texte intégralFrank, Philipp [Verfasser], et Burkhard [Akademischer Betreuer] Wilking. « Cohomogeneity one manifolds with positive Euler characteristic / Philipp Frank. Betreuer : Burkhard Wilking ». Münster : Universitäts- und Landesbibliothek der Westfälischen Wilhelms-Universität, 2011. http://d-nb.info/1027017088/34.
Texte intégralPeternell, Natalie Kathrin [Verfasser], et Emanuel [Akademischer Betreuer] Scheidegger. « Coherent sheaves on Calabi-Yau manifolds, Picard-Fuchs equations and potential functions ». Freiburg : Universität, 2018. http://d-nb.info/1174142456/34.
Texte intégralLora, Lamia Donin Niccolò [Verfasser]. « Hyperkähler manifolds of curves and l-hypercomplex structures / Niccolò Lora Lamia Donin ». Hannover : Gottfried Wilhelm Leibniz Universität Hannover, 2018. http://d-nb.info/1170416152/34.
Texte intégralCorro, Tapia Diego [Verfasser], et W. [Akademischer Betreuer] Tuschmann. « Manifolds with aspherical singular Riemannian foliations / Diego Corro Tapia ; Betreuer : W. Tuschmann ». Karlsruhe : KIT-Bibliothek, 2018. http://d-nb.info/1165143194/34.
Texte intégralDebreli-Bölzle, Sebastian [Verfasser], et Stefan [Akademischer Betreuer] Teufel. « Semiclassical Wave Packets on Riemannian Manifolds / Sebastian Debreli-Bölzle ; Betreuer : Stefan Teufel ». Tübingen : Universitätsbibliothek Tübingen, 2018. http://d-nb.info/116880471X/34.
Texte intégralKemper, Matthias [Verfasser], et Joachim [Akademischer Betreuer] Lohkamp. « Gromov hyperbolic manifolds, weighted isoperimetry and bubbles / Matthias Kemper ; Betreuer : Joachim Lohkamp ». Münster : Universitäts- und Landesbibliothek Münster, 2021. http://d-nb.info/1236632478/34.
Texte intégralDelcroix, Thibaut. « Métriques de Kähler-Einstein sur les compactifications de groupes ». Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAM046/document.
Texte intégralThe main result of this work is a necessary and sufficient condition for the existence of a Kähler-Einstein metric on a smooth and Fano bi-equivariant compactification of a complex connected reductive group. Examples of such varieties include wonderful compactifications of adjoint semisimple groups.The tools needed to study the existence of Kähler-Einstein metrics on these varieties are developed in the first part of the work, including a computation of the complex Hessian of a $Ktimes K$-invariant function on the complexification of a compact group $K$. Another step is to associate to any non-negatively curved invariant hermitian metric on an ample linearized line bundle on a group compactification a convex function with prescribed asymptotic behavior. This is used a first time to derive a formula for the alpha invariantof an ample line bundle on a Fano group compactification. This formula is obtained through the computation of the log canonical thresholds of any non-negatively curved invariant hermitian metric, and gives the sameresult, for toric manifolds, as the one we obtained before, in an article that is included in this thesis as an appendix.Then we prove the main result by obtaining $C^0$ estimates along the continuity method, using the tools developed to reduce to a real Monge-Ampère equation on a cone. The condition obtained is that the barycenter of the polytope associated to the group compactification, with respect to the Duistermaat-Heckman measure, lies in a certain zone in the polytope. This condition can be checked on examples, gives new examples of Fano Kähler-Einstein manifolds, and also gives an example that admits no Kähler-Ricci solitons. We also compute the greatest Ricci lower bound when there are no Kähler-Einstein metrics
Meyer, Johannes [Verfasser], Gudlaugur [Gutachter] Thorbergsson et Alexander [Gutachter] Lytchak. « Polar Foliations on Positively Curved Manifolds / Johannes Meyer. Gutachter : Gudlaugur Thorbergsson ; Alexander Lytchak ». Köln : Universitäts- und Stadtbibliothek Köln, 2016. http://d-nb.info/1107539420/34.
Texte intégralSpilioti, Polyxeni [Verfasser]. « Selberg and Ruelle zeta functions on compact hyperbolic odd dimensional manifolds / Polyxeni Spilioti ». Bonn : Universitäts- und Landesbibliothek Bonn, 2015. http://d-nb.info/1080561153/34.
Texte intégralStrunk, Nils [Verfasser]. « Critical well-posedness results for nonlinear Schrödinger equations on compact manifolds / Nils Strunk ». Bielefeld : Universitätsbibliothek Bielefeld, 2015. http://d-nb.info/1078112487/34.
Texte intégralHoffmann, Michael [Verfasser]. « L2-index theory, the Chern conjecture, and manifolds of special holonomy / Michael Hoffmann ». Bonn : Universitäts- und Landesbibliothek Bonn, 2014. http://d-nb.info/107728893X/34.
Texte intégralGlobke, Wolfgang [Verfasser], et O. [Akademischer Betreuer] Baues. « Holonomy Groups of Flat Pseudo-Riemannian Homogeneous Manifolds / Wolfgang Globke. Betreuer : O. Baues ». Karlsruhe : KIT-Bibliothek, 2011. http://d-nb.info/1014279771/34.
Texte intégralSpiegel, Fabian-Michael [Verfasser]. « Scalar curvature rigidity on locally conformally flat manifolds with boundary / Fabian-Michael Spiegel ». Bonn : Universitäts- und Landesbibliothek Bonn, 2016. http://d-nb.info/1124540059/34.
Texte intégralHuster, Johannes [Verfasser], et Janko [Akademischer Betreuer] Latschev. « Contributions to the string topology of product manifolds / Johannes Huster ; Betreuer : Janko Latschev ». Hamburg : Staats- und Universitätsbibliothek Hamburg, 2016. http://d-nb.info/112228649X/34.
Texte intégralKim, Hwajeong [Verfasser], et Michael [Akademischer Betreuer] Grüter. « Unstable minimal surfaces of annulus type in manifolds / Hwajeong Kim. Betreuer : Michael Grüter ». Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2011. http://d-nb.info/1051285127/34.
Texte intégralHuster, Johannes Verfasser], et Janko [Akademischer Betreuer] [Latschev. « Contributions to the string topology of product manifolds / Johannes Huster ; Betreuer : Janko Latschev ». Hamburg : Staats- und Universitätsbibliothek Hamburg, 2016. http://d-nb.info/112228649X/34.
Texte intégral