Sommaire
Littérature scientifique sur le sujet « Cytokinesis, Saccharomyces cerevisiae »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Cytokinesis, Saccharomyces cerevisiae ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Cytokinesis, Saccharomyces cerevisiae"
Song, Sukgil, et Kyung S. Lee. « A Novel Function of Saccharomyces cerevisiae CDC5 in Cytokinesis ». Journal of Cell Biology 152, no 3 (5 février 2001) : 451–70. http://dx.doi.org/10.1083/jcb.152.3.451.
Texte intégralLuca, Francis C., Manali Mody, Cornelia Kurischko, David M. Roof, Thomas H. Giddings et Mark Winey. « Saccharomyces cerevisiae Mob1p Is Required for Cytokinesis and Mitotic Exit ». Molecular and Cellular Biology 21, no 20 (15 octobre 2001) : 6972–83. http://dx.doi.org/10.1128/mcb.21.20.6972-6983.2001.
Texte intégralBi, Erfei, Paul Maddox, Daniel J. Lew, E. D. Salmon, John N. McMillan, Elaine Yeh et John R. Pringle. « Involvement of an Actomyosin Contractile Ring in Saccharomyces cerevisiae Cytokinesis ». Journal of Cell Biology 142, no 5 (7 septembre 1998) : 1301–12. http://dx.doi.org/10.1083/jcb.142.5.1301.
Texte intégralBouquin, N., Y. Barral, R. Courbeyrette, M. Blondel, M. Snyder et C. Mann. « Regulation of cytokinesis by the Elm1 protein kinase in Saccharomyces cerevisiae ». Journal of Cell Science 113, no 8 (15 avril 2000) : 1435–45. http://dx.doi.org/10.1242/jcs.113.8.1435.
Texte intégralJiménez, Javier, Víctor J. Cid, Rosa Cenamor, María Yuste, Gloria Molero, César Nombela et Miguel Sánchez. « Morphogenesis beyond Cytokinetic Arrest in Saccharomyces cerevisiae ». Journal of Cell Biology 143, no 6 (14 décembre 1998) : 1617–34. http://dx.doi.org/10.1083/jcb.143.6.1617.
Texte intégralLee, Philip R., Sukgil Song, Hyeon-Su Ro, Chong J. Park, John Lippincott, Rong Li, John R. Pringle, Claudio De Virgilio, Mark S. Longtine et Kyung S. Lee. « Bni5p, a Septin-Interacting Protein, Is Required for Normal Septin Function and Cytokinesis in Saccharomyces cerevisiae ». Molecular and Cellular Biology 22, no 19 (1 octobre 2002) : 6906–20. http://dx.doi.org/10.1128/mcb.22.19.6906-6920.2002.
Texte intégralSchmidt, M. « Survival and cytokinesis of Saccharomyces cerevisiae in the absence of chitin ». Microbiology 150, no 10 (1 octobre 2004) : 3253–60. http://dx.doi.org/10.1099/mic.0.27197-0.
Texte intégralLuo, Jianying, Elizabeth A. Vallen, Christopher Dravis, Serguei E. Tcheperegine, Becky Drees et Erfei Bi. « Identification and functional analysis of the essential and regulatory light chains of the only type II myosin Myo1p in Saccharomyces cerevisiae ». Journal of Cell Biology 165, no 6 (21 juin 2004) : 843–55. http://dx.doi.org/10.1083/jcb.200401040.
Texte intégralPark, Chong Jin, Sukgil Song, Philip R. Lee, Wenying Shou, Raymond J. Deshaies et Kyung S. Lee. « Loss of CDC5 Function in Saccharomyces cerevisiae Leads to Defects in Swe1p Regulation and Bfa1p/Bub2p-Independent Cytokinesis ». Genetics 163, no 1 (1 janvier 2003) : 21–33. http://dx.doi.org/10.1093/genetics/163.1.21.
Texte intégralPowell, Chris D., David E. Quain et Katherine A. Smart. « Chitin scar breaks in aged Saccharomyces cerevisiae ». Microbiology 149, no 11 (1 novembre 2003) : 3129–37. http://dx.doi.org/10.1099/mic.0.25940-0.
Texte intégralThèses sur le sujet "Cytokinesis, Saccharomyces cerevisiae"
CASSANI, CORINNE. « Regulation of cytokinesis in saccharomyces cerevisiae ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/50092.
Texte intégralCytokinesis is the spatially and temporally regulated process by which, after chromosome segregation, eukaryotic cells divide their cytoplasm and membranes to produce two daughter cells independent of each other. In the budding yeast Saccharomyces cerevisiae cytokinesis is driven by tightly regulated pathways that coordinate cell division with nuclear division to ensure the genetic stability during cell growth. These ways promote actomyosin ring (AMR) contraction coupled to plasma membrane constriction and to centripetal deposition of the primary septum, respectively. These pathways can partially substitute for each other, but their concomitant inactivation leads to cytokinesis block and cell death. In animal cells, the division plane is defined by the central spindle positioning and cytokinesis occurs through the contraction of the AMR, followed by the membrane furrowing. In S. cerevisiae, the first step towards cytokinesis is the assembly of a rigid septin ring, which forms at the bud neck concomitantly with bud emergence as soon as cells enter S phase and marks the position where constriction between mother and daughter cell will take place at the end of mitosis. The septin ring acts as a scaffold for the recruitment other proteins, among which Myo1, the heavy chain of the type II miosin. Myo1 forms a ring at the site of bud emergence at the onset of S phase in a septin-dependent manner. At the end of anaphase, an actin ring overlaps with that of Myo1 and the resulting contractile actomyosin ring drives primary septum deposition. The septin ring also recruits Iqg1 which is important, together with Bni1, for actin recruitment at the bud neck, Cyk3, required for proper synthesis of the septum, and Hof1, which is phosphorylated in telophase and colocalizes with the actomyosin ring during cytokinesis. The subsequent degradation of Hof1 allows efficient AMR contraction and cell separation. During mitotic exit, Chs2 localizes at the cell division site, where it drives synthesis of the primary septum, composed of chitin, simultaneously with actomyosin ring contraction. Afterwards the secondary septum, which has a similar composition to yeast cell wall, is produced on both the mother and the daughter side of the bud neck. The subsequent degradation of the primary septum from the daughter-side is ensured by the RAM pathway that is activated only in the bud. At this point mother and daughter cell separate permanently from each other leaving a chitin disk, that is the primary septum residue, called “bud scar", on the mother cell surface. In the first chapter we describe the role in cytokinesis of the functionally redundant FHA-RING ubiquitin ligases Dma1 and Dma2, that belong to the same ubiquitin ligase family as human Chfr and Rnf8 and Schizosaccharomyces pombe Dma1. In particular we show that both the lack of Dma1 and Dma2 and moderate Dma2 overproduction affect actomyosin ring contraction as well as primary septum deposition, although they do not apparently alter cell cycle progression of otherwise wild type cells. In addition, overproduction of Dma2 impairs the interaction between Tem1 and Iqg1, which is thought to be required for AMR contraction, and causes asymmetric primary septum deposition as well as mislocalization of Cyk3, a positive regulator of this process. In agreement with these multiple inhibitory effects, a Dma2 excess that does not cause any apparent defect in wild-type cells leads to lethal cytokinesis block in cells lacking the Hof1 protein, which is essential for primary septum formation in the absence of Cyk3. Altogether, these findings suggest that the Dma proteins act as negative regulators of cytokinesis. In the second chapter we show that the Ras-like GTPase Tem1 ubiquitylation is involved in AMR contraction regulation. Tem1 is not required for the actomyosin ring assembly but is required for its dynamics. In the first chapter we show how this protein undergoes cell cycle-regulated ubiquitylation, in particular the amount of ubiquitylated Tem1 decreases concomitantly with cells undergoing AMR contraction. Interestingly, high levels of Dma2 induce Tem1 ubiquitylation as well as inhibit AMR contraction. Analyzing the kinetics of AMR contraction in cells that express high levels of Dma2 and different Tem1 K-R variants (in which lysine residues were replaced by arginine residues, thus becoming not ubiquitylable), we show that Tem1 ubiquitylation seems to be important for Dma2’s AMR contraction inhibition. In particular lysines 112, 133 and 219 are mostly implicated in this regulation. Altogether, these findings suggest that the Dma proteins act as negative regulators of AMR contraction by indirectly influencing Tem1 ubiquitylation. In the third chapter we show that Dma1 and Dma2 are involved in the NoCut pathway, a checkpoint whose activation prevents chromosome breakage during cell division. The lack of Dma proteins affects checkpoint activation in the presence of mutations that cause chromatin persistance at the division site or spindle midzone damage. Moreover, the lack of Dma1 and Dma2 causes cell growth defect in combination with the deletion of genes involved in the NoCut pathway or in the mechanisms that permit DNA breaks repair generated when the checkpoint is not totally functional. Furthermore the lack of Dma proteins, although they do not apparently alter cell cycle progression, when combined with the lack of Boi proteins (that work as abscission inhibitors in the NoCut pathway) causes a growth defect due to an increase in chromosome missegregation. Altogether, these findings suggest that the Dma proteins act in the NoCut pathway. In the last chapther we describe the functional characterization of a new player in cell division control: Vhs2. Despite it is not essential for cells viability, we show how this protein is implicated in septins stabilizaton. The lack of Vhs2 causes cell growth defect in combination with several mutants that affect septin structure. Moreover vhs2Δ cells per se have a defect in septin stability, in fact these cells show a typical phenotype: the septins disappear from the division site before mitotic spindle disassembly, while in wild type cells septins remain until the end of cytokinesis. We also show that Vhs2 is subject to phosphorylations that decrease at the beginning of cytokinesis and that is regulated by Cdc14 phosphatase.
Ko, Nien-Hsi Pringle John R. « Investigating septin-dependent, actomyosin-ring-independent cytokinesis in Saccharomyces cerevisiae ». Chapel Hill, N.C. : University of North Carolina at Chapel Hill, 2007. http://dc.lib.unc.edu/u?/etd,798.
Texte intégralTitle from electronic title page (viewed Dec. 18, 2007). "... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biology." Discipline: Biology; Department/School: Biology.
Kuzmanovic, Deborah Allen. « The role of a myosin in yeast cytokinesis / ». Thesis, Connect to this title online ; UW restricted, 2000. http://hdl.handle.net/1773/10299.
Texte intégralXiong, Yulan. « Study on cytokinesis and vesicle trafficking in budding yeast Saccharomyces cerevisiae ». Thesis, Lancaster University, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.485252.
Texte intégralAtkins, Benjamin David. « Inhibition of Cdc42 during mitotic exit is required for cytokinesis in Saccharomyces cerevisiae ». Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11257.
Texte intégralCundell, Michael John. « The role of CYK3 and the amphiphysins RVS167 and RVS161 in cytokinesis in the budding yeast Saccharomyces cerevisiae ». Thesis, Lancaster University, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.539633.
Texte intégralCourtellemont, Thibault. « Septin regulation by the Protein Kinase C in the budding yeast, Saccharomyces cerevisiae ». Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20007/document.
Texte intégralCytokinesis is the last step of mitosis and is the fundamental process leading to the physical separation of two daughter cells. Defects in cytokinesis generate polyploid cells that are prone to chromosome missegregation and cancer development. In animal cells and fungi, cytokinesis requires the formation and contraction of an actomyosin ring that drives ingression of the cleavage furrow. Additional cytoskeletal proteins called septins contribute to cytokinesis. In the budding yeast Saccharomyces cerevisiae, five different septins are expressed during the mitotic cell cycle (Cdc3, Cdc10, Cdc11, Cdc12 and Shs1). All septins, except for Shs1, are essential for cell viability. Yeast septins form filaments that in turn organize into a ring at the bud neck, which is the constriction between the mother and the future daughter cell where cytokinesis takes place. The septin ring then expands into a rigid septin collar that acts as scaffold for cytokinesis by recruiting most cytokinetic proteins to the bud neck. Cell cycle-regulated changes in septin ring dynamics are thought to be important for its cytokinetic functions and formation of the rigid septin collar is accompanied by septin phosphorylation. However, the kinases responsible for these modifications have not been fully characterized. Unpublished data from our laboratory indicate that the Rho1 GTPase, which is essential for actomyosin ring formation and contraction, and its target protein kinase C (Pkc1) contribute to deposition and stabilization of the septin ring. Here, we have addressed how Pkc1 regulates septin ring deposition and/or stability. To this end, septin complexes were purified from yeast and analyzed by mass spectrometry, comparing wild type and pkc1Δ mutant cells. This mass spectrometry analysis clearly showed that phosphorylation of a cluster of residues in Shs1 decreased in the absence of Pkc1. Interestingly, we found that this cluster is conserved in the septin Cdc11, which together with Shs1 is known to play an important role in the assembly of high-order structures like filaments and rings. Phosphomimetic mutations of the phosphorylatable cluster in Shs1 have been previously shown to disrupt filament formation in-vitro. We therefore proceeded to mutagenise the same cluster in Cdc11, generating a phosphomimetic (CDC11-9D) and in a non-phosphorylatable mutant (CDC11-9A). Strikingly, the phosphomimetic CDC11-9D caused cytokinesis defects in cells lacking Shs1, whereas the non-phosphorylatable CDC11-9A allele partially rescued the sickness of shs1∆ mutant cells. These observations are in agreement with the notion that Cdc11 and Shs1 share overlapping functions and highlight an important role of the phosphorylatable cluster of Cdc11 for cytokinesis. We also found that Pkc1 does not phosphorylate septins directly, but rather regulates the activity of septin kinases and phosphatases. Consistently, we show that Pkc1 affects the interaction between septins and the bud neck kinase Gin4, which is known to interact with septins and to phosphorylate them. In addition, Pkc1 impacts on the phosphorylation of two additional bud neck kinases, Hsl1 and Kcc4, which are part of the same family of Nim1-related kinases as Gin4. In addition, PKC1 deletion leads to a dramatic decrease in the levels of Kcc4 , so that it is barely detected at the bud neck.Deletion of PKC1 affects also the interaction between septins and the Bni4 protein, which is a regulatory subunit for the PP1 phosphatase at the bud neck. In turn, we found that Bni4-PP1 modulates Cdc11 phosphorylation, thereby explaining how the latter is decreased in the absence of Pkc1. Altogether, our data strongly suggest that Pkc1 is a novel major regulator of septins in yeast
Järvstråt, Linnea. « A New Third Compartment Significantly Improves Fit and Identifiability in a Model for Ace2p Distribution in Saccharomyces cerevisiae after Cytokinesis ». Thesis, Linköpings universitet, Institutionen för systemteknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-69354.
Texte intégralMasgrau, Fortuny Aina 1986. « The Cytokinetic inhibitors Boi1 and Boi2 are required for activation of the exocyst complex by Rho GTPases ». Doctoral thesis, Universitat Pompeu Fabra, 2014. http://hdl.handle.net/10803/318168.
Texte intégralTant el creixement com la divisió cel·lular requereix el transport de membrana i altres factors a la superfície cel·lular. En cèl·lules de S. cerevisiae, aquests processos necessiten el transport de vesícules de secreció a través dels cables d’actina fins a les zones de creixement actiu, on es fusionen. Les Rho GTPases regulen la polarització de l’actina i la fusió de vesícules, però es desconeix com les GTPases senyalitzen els diversos efectors i com regulen els dos tipus de funcions. En aquest estudi, demostrem que les proteines Boi1 i Boi2 treballen conjuntament amb la senyalització de les Rho GTPases, per tal de regular la funció del complexe “exocyst” que media els contactes inicials entre vesícules de secreció i la membrana plasmàtica. Cèl·lules sense Boi1/2 tenen el citoesquelet d’actina polaritzat, però la cèl·lula filla no pot emergir ni créixer. Un al·lel d’Exo70, una subunitat de l’”exocyst”, que és efector de les GTPases Rho3 i Cdc42, restaura el creixement de cel·lules defectuoses en la funció de Boi1/2. A més a més, l’hiperactivació de GTPases rescata defectes dels mutants de Boi1/2, suggerint que la funció essencial de Boi1 i Boi2 és promoure l’activació de l’”exocyst”, depenent de Rho, durant el creixement cel·lular. Finalment, hem demostrat que la inibició de la divisió cel·lular que controlen via NoCut els efectors Boi1/2 en cèl·lules amb defectes en la segregació de cromosomes, es rescata amb l’al·lel d’Exo70 descrit anteriorment. Aquestes observacions suggereixen que NoCut podria funcionar també a través de la regulació de l’”exocyst”.
Faty, Mamadou. « Septines : fonctions et organisation structurale ». Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAJ107.
Texte intégralSeptins form a family of GTPases conserved in fungi and animal cells [Kinoshita etal., 2003]. During cell division, they localize at cytokinesis sites and are essential for this process in budding yeast, Drosophila embryos and cultured mammalian cells [Fatyet al., 2002].In budding yeasts, septins, composed of parallel networks of filaments [Byers et al.,1976], form a mother-daughter neck ring. This ring is closely associated with the plasma membrane and constitutes a scaFold for the recruitment of myosin II and other cytokinetic factors at the future cleavage site [Longtine et al., 2003]. In addition, the septin ring contributes to the formation of a lateral diffusion barrier on the plasma membrane, which helps maintain the factors of cell polarity in the bud [Barral et al.,2000; Takizawa et al., 2000].In metazoans, septins are also required for compartmentalization of the cellular cortex [Schmidt et al., 2004; Joo et al., 2005] and are involved in a myriad of cellular processes, including assembly and orientation of the polar body of the spindle [Kusch etal., 2002; Spiliotis et al., 2005], exocytosis and vesicular transport [Hsu et al., 1998;Beites et al., 1999], cell migration [Finger et al., 2003], and apoptosis [Larisch et al.,2000; Gottfried et al., 2004].[...]The set of results presented highlights the molecular arrangement of the monomersin the septin complex and suggests that the septin complexes assemble in filaments and higher order structures at the bud neck in Saccharomyces cerevisiae. Thus, wepropose that septins form the fourth component of the cytoskeleton
Chapitres de livres sur le sujet "Cytokinesis, Saccharomyces cerevisiae"
Huang, Junqi, Mithilesh Mishra, Saravanan Palani, Ting Gang Chew et Mohan K. Balasubramanian. « Isolation of Cytokinetic Actomyosin Rings from Saccharomyces cerevisiae and Schizosaccharomyces pombe ». Dans Methods in Molecular Biology, 125–36. New York, NY : Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3145-3_10.
Texte intégral