Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Cyclic matrice.

Articles de revues sur le sujet « Cyclic matrice »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Cyclic matrice ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Uygun, Hilmiye Deniz Ertugrul, Nihat Tinkilic, Azade Attar et Ibrahim Isildak. « Development of Potentiometric Lactate Biosensor Based on Composite pH Sensor ». Journal of New Materials for Electrochemical Systems 19, no 3 (20 septembre 2016) : 151–56. http://dx.doi.org/10.14447/jnmes.v19i3.313.

Texte intégral
Résumé :
In this study, a micro-sized lactate sensitive biosensor based on polyvinylchloride, quinhydrone and graphite composite pH sensing platform was developed. Lactate oxidase was immobilized on the composite layer as the biorecognition element. Transformation reaction of lactate to pyruvate and hydrogen peroxide was the basis of this biosensor system. In the reaction, hydrogen peroxide undergoes to give hydronium ions into solution, and the pH sensitive membrane detects the adjunct hydronium ions potentiometrically. The surface of lactate biosensor based composite pH sensing matrice was first examined for electrochemical elucidation by using cyclic voltammetry and electrochemical impedance spectroscopy. A linear response in concentration range from 5x10-5 to 1x10-1 mol/L was obtained with a detec-tion limit of 2x10-5 mol/L. The lactate biosensor developed was successfully applied for highly precise and efficient determination of lactate in food preparations. The biosensor exhibited a fast response time (10 s), had good stability, and had an extended lifetime.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Tarasov, Vitaly. « Cyclic monodromy matrices forsl(n) trigonometricR-matrices ». Communications in Mathematical Physics 158, no 3 (décembre 1993) : 459–83. http://dx.doi.org/10.1007/bf02096799.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Shinjo, Masato, Tan Wang, Masashi Iwasaki et Yoshimasa Nakamura. « Roots of Characteristic Polynomial Sequences in Iterative Block Cyclic Reductions ». Mathematics 9, no 24 (12 décembre 2021) : 3213. http://dx.doi.org/10.3390/math9243213.

Texte intégral
Résumé :
The block cyclic reduction method is a finite-step direct method used for solving linear systems with block tridiagonal coefficient matrices. It iteratively uses transformations to reduce the number of non-zero blocks in coefficient matrices. With repeated block cyclic reductions, non-zero off-diagonal blocks in coefficient matrices incrementally leave the diagonal blocks and eventually vanish after a finite number of block cyclic reductions. In this paper, we focus on the roots of characteristic polynomials of coefficient matrices that are repeatedly transformed by block cyclic reductions. We regard each block cyclic reduction as a composition of two types of matrix transformations, and then attempt to examine changes in the existence range of roots. This is a block extension of the idea presented in our previous papers on simple cyclic reductions. The property that the roots are not very scattered is a key to accurately solve linear systems in floating-point arithmetic. We clarify that block cyclic reductions do not disperse roots, but rather narrow their distribution, if the original coefficient matrix is symmetric positive or negative definite.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Zheng, Yanpeng, et Xiaoyu Jiang. « Quasi-cyclic displacement and inversion decomposition of a quasi-Toeplitz matrix ». AIMS Mathematics 7, no 7 (2022) : 11647–62. http://dx.doi.org/10.3934/math.2022649.

Texte intégral
Résumé :
<abstract><p>We study a class of column upper-minus-lower (CUML) Toeplitz matrices, which are "close" to the Toeplitz matrices in the sense that their ($ 1, -1 $)-cyclic displacements coincide with $ \varphi $-cyclic displacement of some Toeplitz matrices. Among others, we derive the inverse formula for CUML Toeplitz matrices in the form of sums of products of factor circulants by constructing the corresponding displacement of the matrices. In addition, by the relationship between CUML Toeplitz matrices and CUML Hankel matrices, the inverse formula for CUML Hankel matrices is also obtained.</p></abstract>
Styles APA, Harvard, Vancouver, ISO, etc.
5

Neumann, Peter M., et Cheryl E. Praeger. « Cyclic Matrices Over Finite Fields ». Journal of the London Mathematical Society 52, no 2 (octobre 1995) : 263–84. http://dx.doi.org/10.1112/jlms/52.2.263.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Tam, Bit-Shun. « On matrices with cyclic structure ». Linear Algebra and its Applications 302-303 (décembre 1999) : 377–410. http://dx.doi.org/10.1016/s0024-3795(99)00097-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Riaza, Ricardo. « Cyclic matrices of weighted digraphs ». Discrete Applied Mathematics 160, no 3 (février 2012) : 280–90. http://dx.doi.org/10.1016/j.dam.2011.09.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Sergeev, A. « Interrelation of Symmetry and Antisymmetry of Quasi-Orthogonal Cyclic Matrices with Prime Numbers ». Proceedings of Telecommunication Universities 8, no 4 (5 janvier 2023) : 14–19. http://dx.doi.org/10.31854/1813-324x-2022-8-4-14-19.

Texte intégral
Résumé :
Quasi-orthogonal Hadamard matrices and Mersenne matrices with two and three values of the elements, used in digital data processing, are considered, as well as the basis of error-correcting codes and algorithms for transforming orthogonal images. Attention is paid to the structures of cyclic matrices with symmetries and antisymmetries. The connection between symmetry and antisymmetry of structures of cyclic Hadamard and Mersenne matrices on a orders equal to prime numbers, products of close primes, composite numbers, powers of a prime number is shown. Separately, orders equal to the degrees of the prime number 2 are distinguished, both the orders of Hadamard matrices and the basis of the composite orders of Mersenne matrices of block structures with two element values. It is shown that symmetric Hadamard matrices of cyclic and bicyclic structures, according to the extended Riser boundary, do not exist on orders above 32. Mersenne matrices of composite orders belonging to the sequence of Mersenne numbers 2k ‒ 1 nested in the sequence of orders of the main family of Mersenne matrices 4t ‒ 1 exist in a symmetric and antisymmetric form. For orders equal to the powers of a prime number, Mersenne matrices exist in the form of block-diagonal constructions with three element values. The value of prime power determines the number of blocks along the diagonal of the matrix on which the elements with the third value are located. The cyclic blocks are symmetrical and antisymmetric.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Corr, Brian P., et Cheryl E. Praeger. « Primary cyclic matrices in irreducible matrix subalgebras ». Journal of Group Theory 21, no 4 (1 juillet 2018) : 667–94. http://dx.doi.org/10.1515/jgth-2018-0012.

Texte intégral
Résumé :
AbstractPrimary cyclic matrices were used (but not named) by Holt and Rees in their version of Parker’s MEAT-AXE algorithm to test irreducibility of finite matrix groups and algebras. They are matrices X with at least one cyclic component in the primary decomposition of the underlying vector space as an X-module. Let {\operatorname{M}(c,q^{b})} be an irreducible subalgebra of {\operatorname{M}(n,q)}, where {n=bc>c}. We prove a generalisation of the Kung–Stong cycle index theorem, and use it to obtain a lower bound for the proportion of primary cyclic matrices in {\operatorname{M}(c,q^{b})}. This extends work of Glasby and the second author on the case {b=1}.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Deveci, Omur, Yesim Akuzum, Erdal Karaduman et Ozgur Erdag. « The Cyclic Groups via Bezout Matrices ». Journal of Mathematics Research 7, no 2 (22 mars 2015) : 34. http://dx.doi.org/10.5539/jmr.v7n2p34.

Texte intégral
Résumé :
<p>In this paper, we define the Bezout matrices by the aid of the characteristic polynomials of the <em>k</em>-step Fibonacci, the generalized order-<em>k</em> Pell and the generalized order-<em>k</em> Jacobsthal sequences then we consider the multiplicative orders of the Bezout matrices when read modulo <em>m</em>. Consequently, we obtain the rules for the order of the cyclic groups by reducing the Bezout matrices modulo <em>m</em>.</p>
Styles APA, Harvard, Vancouver, ISO, etc.
11

MONTGOMERY, AARON M. « Asymptotic Enumeration of Difference Matrices over Cyclic Groups ». Combinatorics, Probability and Computing 27, no 1 (1 août 2017) : 84–109. http://dx.doi.org/10.1017/s0963548317000281.

Texte intégral
Résumé :
We identify a relationship between a certain family of random walks on Euclidean lattices and difference matrices over cyclic groups. We then use the techniques of Fourier analysis to estimate the return probabilities of these random walks, which in turn yields the asymptotic number of difference matrices over cyclic groups as the number of columns increases.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Mahmoodi Rishakani, Akbar, Seyed Mojtaba Dehnavi, Mohmmadreza Mirzaee Shamsabad et Nasour Bagheri. « Cryptographic properties of cyclic binary matrices ». Advances in Mathematics of Communications 15, no 2 (2021) : 311–27. http://dx.doi.org/10.3934/amc.2020068.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Łosiak, Janina, E. Neuman et Jolanta Nowak. « The inversion of cyclic tridiagonal matrices ». Applicationes Mathematicae 20, no 1 (1988) : 93–102. http://dx.doi.org/10.4064/am-20-1-93-102.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Dubeau, F., et J. Savoie. « A remark on cyclic tridiagonal matrices ». Applicationes Mathematicae 21, no 2 (1991) : 253–56. http://dx.doi.org/10.4064/am-21-2-253-256.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Li, Zhongshan, Carolyn A. Eschenbach et Frank J. Hall. « The structure of nonnegative cyclic matrices ». Linear and Multilinear Algebra 41, no 1 (juillet 1996) : 23–33. http://dx.doi.org/10.1080/03081089608818458.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Evans, D. J., et C. Li. « Sor method andp-cyclic matrices (I) ». International Journal of Computer Mathematics 36, no 1-2 (janvier 1990) : 57–76. http://dx.doi.org/10.1080/00207169008803911.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Evans, D. J., et Changjun Li. « Sor method andP-cyclic matrices (II) ». International Journal of Computer Mathematics 37, no 3-4 (janvier 1990) : 239–50. http://dx.doi.org/10.1080/00207169008803952.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

McDonald, Judith J., et Pietro Paparella. « Jordan chains of h-cyclic matrices ». Linear Algebra and its Applications 498 (juin 2016) : 145–59. http://dx.doi.org/10.1016/j.laa.2015.02.029.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Karawia, A. A. « Inversion of General Cyclic Heptadiagonal Matrices ». Mathematical Problems in Engineering 2013 (2013) : 1–9. http://dx.doi.org/10.1155/2013/321032.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Sturmfels, Bernd. « Totally positive matrices and cyclic polytopes ». Linear Algebra and its Applications 107 (août 1988) : 275–81. http://dx.doi.org/10.1016/0024-3795(88)90250-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Audit, Philippe. « Functions of infinite generalized cyclic matrices ». Journal of Mathematical Physics 26, no 3 (mars 1985) : 361–64. http://dx.doi.org/10.1063/1.526668.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Baldi, Marco, Giovanni Cancellieri et Franco Chiaraluce. « Iterative Soft-Decision Decoding of Binary Cyclic Codes ». Journal of Communications Software and Systems 4, no 2 (22 juin 2008) : 142. http://dx.doi.org/10.24138/jcomss.v4i2.227.

Texte intégral
Résumé :
Binary cyclic codes achieve good error correction performance and allow the implementation of very simpleencoder and decoder circuits. Among them, BCH codesrepresent a very important class of t-error correcting codes, with known structural properties and error correction capability. Decoding of binary cyclic codes is often accomplished through hard-decision decoders, although it is recognized that softdecision decoding algorithms can produce significant coding gain with respect to hard-decision techniques. Several approaches have been proposed to implement iterative soft-decision decoding of binary cyclic codes. We study the technique based on “extended parity-check matrices”, and show that such method is not suitable for high rates or long codes. We propose a new approach, based on “reduced parity-check matrices” and “spread parity-check matrices”, that can achieve better correction performance in many practical cases, without increasing the complexity.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Arizmendi, Octavio, et James A. Mingo. « The cyclic group and the transpose of an R-cyclic matrix ». Journal of Operator Theory 85, no 1 (15 décembre 2020) : 135–51. http://dx.doi.org/10.7900/jot.2019oct09.2281.

Texte intégral
Résumé :
We show that using the cyclic group the transpose of an R-cyclic matrix can be decomposed along diagonal parts into a sum of parts which are freely independent over diagonal scalar matrices. Moreover, if the R-cyclic matrix is self-adjoint then the off-diagonal parts are R-diagonal.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Zheng, Yanpeng, Sugoog Shon et Jangyoung Kim. « Cyclic displacements and decompositions of inverse matrices for CUPL Toeplitz matrices ». Journal of Mathematical Analysis and Applications 455, no 1 (novembre 2017) : 727–41. http://dx.doi.org/10.1016/j.jmaa.2017.06.016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

BARBÉ, ANDRÉ M. « FRACTALS BY NUMBERS ». Fractals 03, no 04 (décembre 1995) : 651–61. http://dx.doi.org/10.1142/s0218348x95000588.

Texte intégral
Résumé :
We introduce an extension of an earlier defined simple, number-based matrix substitution system for obtaining fractal matrices, by considering cyclic substitutions. The elements of the resulting matrices are related to representations of their addresses in a mixed number base. The Hutchinson operator for the limit form of a geometrical representation of the fractal matrix is derived. It is shown that the class of fractal limit sets obtainable from cyclic substitutions does not extend the class obtainable from the simple substitutions.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Schell, S. V. « Asymptotic moments of estimated cyclic correlation matrices ». IEEE Transactions on Signal Processing 43, no 1 (1995) : 173–80. http://dx.doi.org/10.1109/78.365296.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Chien, Mao-Ting, et Hiroshi Nakazato. « Singular points of cyclic weighted shift matrices ». Linear Algebra and its Applications 439, no 12 (décembre 2013) : 4090–100. http://dx.doi.org/10.1016/j.laa.2013.10.012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Baker, Charles E., et Boris S. Mityagin. « Localization of eigenvalues of doubly cyclic matrices ». Linear Algebra and its Applications 540 (mars 2018) : 160–202. http://dx.doi.org/10.1016/j.laa.2017.11.016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Jang, Ji-Woong, Jong-Seon No et Habong Chung. « Butson Hadamard matrices with partially cyclic core ». Designs, Codes and Cryptography 43, no 2-3 (18 mai 2007) : 93–101. http://dx.doi.org/10.1007/s10623-007-9065-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Lampio, Pekka H. J., et Patric R. J. Östergård. « Classification of difference matrices over cyclic groups ». Journal of Statistical Planning and Inference 141, no 3 (mars 2011) : 1194–207. http://dx.doi.org/10.1016/j.jspi.2010.09.023.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Glasby, S. P. « The Meat-axe and f-cyclic matrices ». Journal of Algebra 300, no 1 (juin 2006) : 77–90. http://dx.doi.org/10.1016/j.jalgebra.2006.01.026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Lv, Xiao-Guang, et Ting-Zhu Huang. « The Inverses of Block Toeplitz Matrices ». Journal of Mathematics 2013 (2013) : 1–8. http://dx.doi.org/10.1155/2013/207176.

Texte intégral
Résumé :
We study the inverses of block Toeplitz matrices based on the analysis of the block cyclic displacement. New formulas for the inverses of block Toeplitz matrices are proposed. We show that the inverses of block Toeplitz matrices can be decomposed as a sum of products of block circulant matrices. In the scalar case, the inverse formulas are proved to be numerically forward stable, if the Toeplitz matrix is nonsingular and well conditioned.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Balonin, Nikolay, et Dragomir Dokovic. « Three new lengths for cyclic Legendre pairs ». Information and Control Systems, no 1 (25 février 2021) : 2–7. http://dx.doi.org/10.31799/1684-8853-2021-1-2-7.

Texte intégral
Résumé :
Introduction: It is conjectured that the cyclic Legendre pairs of odd lengths >1 always exist. Such a pair consists of two functions a, b: G→Z, whose values are +1 or −1, and whose periodic autocorrelation function adds up to the constant value −2 (except at the origin). Here G is a finite cyclic group and Z is the ring of integers. These conditions are fundamental and the closely related structure of Hadamard matrices having a two circulant core and double border is incompletely described in literature, which makes its study especially relevant. Purpose: To describe the two-border two-circulant-core construction for Legendre pairs having three new lengths. Results: To construct new Legendre pairs we use the subsets X={x∈G: a(x)=–1} and Y={x∈G: b(x)=–1} of G. There are 20 odd integers v less than 200 for which the existence of Legendre pairs of length v is undecided. The smallest among them is v=77. We have constructed Legendre pairs of lengths 91, 93 and 123 reducing thereby the number of undecided cases to 17. In the last section of the paper we list some new examples of cyclic Legendre pairs for lengths v≤123. Practical relevance: Hadamard matrices are used extensively in the problems of error-free coding, and compression and masking of video information. Programs for search of Hadamard matrices and a library of constructed matrices are used in the mathematical network “mathscinet.ru” together with executable on-line algorithms
Styles APA, Harvard, Vancouver, ISO, etc.
34

Brahmi, Amine, Hicham Ghennioui, Christophe Corbier, François Guillet et M’hammed Lahbabi. « Blind Separation of Cyclostationary Sources Sharing Common Cyclic Frequencies Using Joint Diagonalization Algorithm ». Mathematical Problems in Engineering 2017 (2017) : 1–9. http://dx.doi.org/10.1155/2017/2546838.

Texte intégral
Résumé :
We propose a new method for blind source separation of cyclostationary sources, whose cyclic frequencies are unknown and may share one or more common cyclic frequencies. The suggested method exploits the cyclic correlation function of observation signals to compose a set of matrices which has a particular algebraic structure. The aforesaid matrices are automatically selected by proposing two new criteria. Then, they are jointly diagonalized so as to estimate the mixing matrix and retrieve the source signals as a consequence. The nonunitary joint diagonalization (NU-JD) is ensured by Broyden-Fletcher-Goldfarb-Shanno (BFGS) method which is the most commonly used update strategy for implementing a quasi-Newton technique. The efficiency of the method is illustrated by numerical simulations in digital communications context, which show good performances comparing to other state-of-the-art methods.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Gavelia, S. P. « To construction of Green matrices of edge problems of theory of flat hulls with cyclic periodicity ». Researches in Mathematics, no 2 (10 juillet 2021) : 10. http://dx.doi.org/10.15421/246903.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Devecı˙, Ömür, et Erdal Karaduman. « The cyclic groups via the Pascal matrices and the generalized Pascal matrices ». Linear Algebra and its Applications 437, no 10 (novembre 2012) : 2538–45. http://dx.doi.org/10.1016/j.laa.2012.06.024.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Dessalew, Gashaye, Tesfaye Kebede, Gurju Awgichew et Assaye Walelign. « Generalized Refinement of Gauss-Seidel Method for Consistently Ordered 2-Cyclic Matrices ». Abstract and Applied Analysis 2021 (31 mai 2021) : 1–7. http://dx.doi.org/10.1155/2021/8343207.

Texte intégral
Résumé :
This paper presents generalized refinement of Gauss-Seidel method of solving system of linear equations by considering consistently ordered 2-cyclic matrices. Consistently ordered 2-cyclic matrices are obtained while finite difference method is applied to solve differential equation. Suitable theorems are introduced to verify the convergence of this proposed method. To observe the effectiveness of this method, few numerical examples are given. The study points out that, using the generalized refinement of Gauss-Seidel method, we obtain a solution of a problem with a minimum number of iteration and obtain a greater rate of convergence than other previous methods.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Kocik, Jerzy. « A Porism Concerning Cyclic Quadrilaterals ». Geometry 2013 (13 août 2013) : 1–5. http://dx.doi.org/10.1155/2013/483727.

Texte intégral
Résumé :
We present a geometric theorem on a porism about cyclic quadrilaterals, namely, the existence of an infinite number of cyclic quadrilaterals through four fixed collinear points once one exists. Also, a technique of proving such properties with the use of pseudounitary traceless matrices is presented. A similar property holds for general quadrics as well as for the circle.
Styles APA, Harvard, Vancouver, ISO, etc.
39

KOPELIOVICH, YAACOV. « THETA CONSTANT IDENTITIES AT PERIODS OF COVERINGS OF DEGREE 3 ». International Journal of Number Theory 04, no 05 (octobre 2008) : 725–33. http://dx.doi.org/10.1142/s1793042108001663.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Sabri, K., M. El Badaoui, F. Guillet, A. Adib et D. Aboutajdine. « On Blind MIMO System Identification Based on Second-Order Cyclic Statistics ». Research Letters in Signal Processing 2008 (2008) : 1–5. http://dx.doi.org/10.1155/2008/539139.

Texte intégral
Résumé :
This letter introduces a new frequency domain approach for either MIMO System Identification or Source Separation of convolutive mixtures in cyclostationary context. We apply the joint diagonalization algorithm to a set of cyclic spectral density matrices of the measurements to identify the mixing system at each frequency up to permutation and phase ambiguity matrices. An efficient algorithm to overcome the frequency dependent permutations and to recover the phase, even for non-minimum-phase channels, based on cyclostationarity is also presented. The new approach exploits the fact that each input has a different and specific cyclic frequency. A comparison with an existing MIMO method is proposed.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Vysotskaya, Viktoriya V., et Lev I. Vysotsky. « Invertible matrices over some quotient rings : identification, generation, and analysis ». Discrete Mathematics and Applications 32, no 4 (1 août 2022) : 263–78. http://dx.doi.org/10.1515/dma-2022-0022.

Texte intégral
Résumé :
Abstract We study matrices over quotient rings modulo univariate polynomials over a two-element field. Lower bounds for the fraction of the invertible matrices among all such matrices of a given size are obtained. An efficient algorithm for calculating the determinant of matrices over these quotient rings and an algorithm for generating random invertible matrices (with uniform distribution on the set of all invertible matrices) are proposed and analyzed. An effective version of the latter algorithm for quotient rings modulo polynomials of form x r − 1 is considered and analyzed. These methods may find practical applications for generating keys of cryptographic schemes based on quasi-cyclic codes such as LEDAcrypt.
Styles APA, Harvard, Vancouver, ISO, etc.
42

TARASOV, VITALY O. « CYCLIC MONODROMY MATRICES FOR THE R-MATRIX OF THE SIX-VERTEX MODEL AND THE CHIRAL POTTS MODEL WITH FIXED SPIN BOUNDARY CONDITIONS ». International Journal of Modern Physics A 07, supp01b (avril 1992) : 963–75. http://dx.doi.org/10.1142/s0217751x92004129.

Texte intégral
Résumé :
Irreducible cyclic representations of the algebra of monodromy matrices corresponding to the R-matrix of the six-vertex model are described. As a consequence, the direct computation of spectra for transfer-matrices of the chiral Potts model with special fixed-spin boundary conditions is done. The generalization of simple Baxter's Hamiltonian is proposed.
Styles APA, Harvard, Vancouver, ISO, etc.
43

A. Zain, Adnan. « On Group Codes Over Elementary Abelian Groups ». Sultan Qaboos University Journal for Science [SQUJS] 8, no 2 (1 juin 2003) : 145. http://dx.doi.org/10.24200/squjs.vol8iss2pp145-151.

Texte intégral
Résumé :
For group codes over elementary Abelian groups we present definitions of the generator and the parity check matrices, which are matrices over the ring of endomorphism of the group. We also lift the theorem that relates the parity check and the generator matrices of linear codes over finite fields to group codes over elementary Abelian groups. Some new codes that are MDS, self-dual, and cyclic over the Abelian group with four elements are given.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Bolotnikov, Vladimir. « Cyclic matrices and polynomial interpolation over division rings ». Linear Algebra and its Applications 646 (août 2022) : 132–74. http://dx.doi.org/10.1016/j.laa.2022.03.030.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Beasley, Leroy B., et Sang-Gu Lee. « Linear operators strongly preservingr-cyclic matrices over semirings ». Linear and Multilinear Algebra 35, no 3-4 (août 1993) : 325–37. http://dx.doi.org/10.1080/03081089308818265.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Chien, Mao-Ting, et Hiroshi Nakazato. « Hyperbolic forms associated with cyclic weighted shift matrices ». Linear Algebra and its Applications 439, no 11 (décembre 2013) : 3541–54. http://dx.doi.org/10.1016/j.laa.2013.09.018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Neumann, Peter M., et Cheryl E. Praeger. « Cyclic Matrices in Classical Groups over Finite Fields ». Journal of Algebra 234, no 2 (décembre 2000) : 367–418. http://dx.doi.org/10.1006/jabr.2000.8548.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Nica, Alexandru, Dimitri Shlyakhtenko et Roland Speicher. « R-Cyclic Families of Matrices in Free Probability ». Journal of Functional Analysis 188, no 1 (janvier 2002) : 227–71. http://dx.doi.org/10.1006/jfan.2001.3814.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Kim, Doyoon, Byeongdu Lee, Brittany Marshall, Stavros Thomopoulos et Young-Shin Jun. « Cyclic strain enhances the early stage mineral nucleation and the modulus of demineralized bone matrix ». Biomaterials Science 9, no 17 (2021) : 5907–16. http://dx.doi.org/10.1039/d1bm00884f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Abuzin, Leonid, Nikolai Unknown, Dragomir Ðoković et Ilias Kotsireas. « Hadamard matrices from Goethals — Seidel difference families with a repeated block ». Information and Control Systems, no 5 (16 octobre 2019) : 2–9. http://dx.doi.org/10.31799/1684-8853-2019-5-2-9.

Texte intégral
Résumé :
Purpose: To construct Hadamard matrices by using Goethals — Seidel difference families having a repeated block, generalizingthe so called propus construction. In particular we construct the first examples of symmetric Hadamard matrices of order 236.Methods: The main ingredient of the propus construction is a difference family in a finite abelian group of order v consisting offour blocks (X1, X2, X3, X4) where X1 is symmetric and X2 X3. The parameters (v; k1, k2, k3, k4; λ) of such family must satisfythe additional condition ki  λ  v. We modify this construction by imposing different symmetry conditions on some of theblocks and construct many examples of Hadamard matrices of this kind. In this paper we work with the cyclic group Zv of order v.For larger values of v we build the blocks Xi by using the orbits of a suitable small cyclic subgroup of the automorphism groupof Zv. Results: We continue the systematic search for symmetric Hadamard matrices of order 4v by using the propus construction.Such searches were carried out previously for odd v  51. We extend it to cover the case v53. Moreover we construct thefirst examples of symmetric Hadamard matrices of order 236. A wide collection of symmetric and skew-symmetric Hadamardmatrices was obtained and the corresponding difference families tabulated by using the symmetry properties of their blocks.Practical relevance: Hadamard matrices are used extensively in the problems of error-free coding, compression and masking ofvideo information. Programs for search of symmetric Hadamard matrices and a library of constructed matrices are used in themathematical network Internet together with executable on line algorithms.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie