Littérature scientifique sur le sujet « Cyber-Physical-Social Energy System »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Cyber-Physical-Social Energy System ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Cyber-Physical-Social Energy System"

1

Han, Jianpei, Nian Liu et Chenghong Gu. « Optimization of transactive energy systems with demand response : A cyber‐physical‐social system perspective ». Energy Conversion and Economics 3, no 3 (juin 2022) : 142–55. http://dx.doi.org/10.1049/enc2.12058.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Song, Meng, Yunfeng Cai, Ciwei Gao, Tao Chen, Yunting Yao et Hao Ming. « Transactive energy in power distribution systems : Paving the path towards cyber-physical-social system ». International Journal of Electrical Power & ; Energy Systems 142 (novembre 2022) : 108289. http://dx.doi.org/10.1016/j.ijepes.2022.108289.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Chen, Liudong, Ying Li, Yubing Chen, Nian Liu, Chenchen Li et Hongyu Zhang. « Emergency resources scheduling in distribution system : From cyber-physical-social system perspective ». Electric Power Systems Research 210 (septembre 2022) : 108114. http://dx.doi.org/10.1016/j.epsr.2022.108114.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Xue, Yusheng, et Xinghuo Yu. « Beyond smart grid—cyber–physical–social system in energy future [point of view] ». Proceedings of the IEEE 105, no 12 (décembre 2017) : 2290–92. http://dx.doi.org/10.1109/jproc.2017.2768698.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Li, Zhen-Long, Peng Li, Jing Xia et Zhi-Peng Yuan. « Cyber-physical-social system scheduling for multi-energy microgrids with distribution network coordination ». International Journal of Electrical Power & ; Energy Systems 149 (juillet 2023) : 109054. http://dx.doi.org/10.1016/j.ijepes.2023.109054.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Bao, Xuecai, Hao Liang et Longzhe Han. « Transmission Optimization of Social and Physical Sensor Nodes via Collaborative Beamforming in Cyber-Physical-Social Systems ». Sensors 18, no 12 (6 décembre 2018) : 4300. http://dx.doi.org/10.3390/s18124300.

Texte intégral
Résumé :
The recently emerging cyber-physical-social system (CPSS) can enable efficient interactions between the social world and cyber-physical system (CPS). The wireless sensor network (WSN) with physical and social sensor nodes plays an important role in CPSS. The integration of the social sensors and physical sensors in CPSS provides an advantage for smart services in different application areas. However, the dynamics of social mobility for social sensors pose new challenges for implementing the coordination of transmission. Furthermore, the integration of social and physical sensors also faces the challenges in term of improving energy efficiency and increasing transmission range. To solve these problems, we integrate the model of social dynamics with collaborative beamforming (CB) technique to formulate the transmission optimization problem as a dynamic game. A novel transmission scheme based on reinforcement learning is proposed to solve the formulated problem. The corresponding implementation of the proposed transmission scheme in CPSS is presented by the design of message exchange processes. The extensive simulation results demonstrate that the proposed transmission scheme presents lower interference to noise ratio (INR) and better signal to noise ratio (SNR) performance in comparison with the existing schemes. The results also indicate that the proposed method has effective adaptation to the dynamic mobility of social sensor nodes in CPSS.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Yang, Xinxin, Bin Cai et Yusheng Xue. « Review on Optimization of Nuclear Power Development : A Cyber-Physical-Social System in Energy Perspective ». Journal of Modern Power Systems and Clean Energy 10, no 3 (2022) : 547–61. http://dx.doi.org/10.35833/mpce.2021.000272.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Zhang, Xiaoshun, Tao Yu, Zhao Xu et Zhun Fan. « A cyber-physical-social system with parallel learning for distributed energy management of a microgrid ». Energy 165 (décembre 2018) : 205–21. http://dx.doi.org/10.1016/j.energy.2018.09.069.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Puliafito, Antonio, Giuseppe Tricomi, Anastasios Zafeiropoulos et Symeon Papavassiliou. « Smart Cities of the Future as Cyber Physical Systems : Challenges and Enabling Technologies ». Sensors 21, no 10 (12 mai 2021) : 3349. http://dx.doi.org/10.3390/s21103349.

Texte intégral
Résumé :
A smart city represents an improvement of today’s cities, both functionally and structurally, that strategically utilizes several smart factors, capitalizing on Information and Communications Technology (ICT) to increase the city’s sustainable growth and strengthen the city’s functions, while ensuring the citizens’ enhanced quality of life and health. Cities can be viewed as a microcosm of interconnected “objects” with which citizens interact daily, which represents an extremely interesting example of a cyber physical system (CPS), where the continuous monitoring of a city’s status occurs through sensors and processors applied within the real-world infrastructure. Each object in a city can be both the collector and distributor of information regarding mobility, energy consumption, air pollution as well as potentially offering cultural and tourist information. As a consequence, the cyber and real worlds are strongly linked and interdependent in a smart city. New services can be deployed when needed, and evaluation mechanisms can be set up to assess the health and success of a smart city. In particular, the objectives of creating ICT-enabled smart city environments target (but are not limited to) improved city services; optimized decision-making; the creation of smart urban infrastructures; the orchestration of cyber and physical resources; addressing challenging urban issues, such as environmental pollution, transportation management, energy usage and public health; the optimization of the use and benefits of next generation (5G and beyond) communication; the capitalization of social networks and their analysis; support for tactile internet applications; and the inspiration of urban citizens to improve their quality of life. However, the large scale deployment of cyber-physical-social systems faces a series of challenges and issues (e.g., energy efficiency requirements, architecture, protocol stack design, implementation, and security), which requires more smart sensing and computing methods as well as advanced networking and communications technologies to provide more pervasive cyber-physical-social services. In this paper, we discuss the challenges, the state-of-the-art, and the solutions to a set of currently unresolved key questions related to CPSs and smart cities.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Konstantopoulos, George C., Antonio T. Alexandridis et Panos C. Papageorgiou. « Towards the Integration of Modern Power Systems into a Cyber–Physical Framework ». Energies 13, no 9 (1 mai 2020) : 2169. http://dx.doi.org/10.3390/en13092169.

Texte intégral
Résumé :
The cyber–physical system (CPS) architecture provides a novel framework for analyzing and expanding research and innovation results that are essential in managing, controlling and operating complex, large scale, industrial systems under a holistic insight. Power systems constitute such characteristically large industrial structures. The main challenge in deploying a power system as a CPS lies on how to combine and incorporate multi-disciplinary, core, and advanced technologies into the specific for this case, social, environmental, economic and engineering aspects. In order to substantially contribute towards this target, in this paper, a specific CPS scheme that clearly describes how a dedicated cyber layer is deployed to manage and interact with comprehensive multiple physical layers, like those found in a large-scale modern power system architecture, is proposed. In particular, the measurement, communication, computation, control mechanisms, and tools installed at different hierarchical frames that are required to consider and modulate the social/environmental necessities, as well as the electricity market management, the regulation of the electric grid, and the power injection/absorption of the controlled main devices and distributed energy resources, are all incorporated in a common CPS framework. Furthermore, a methodology for investigating and analyzing the dynamics of different levels of the CPS architecture (including physical devices, electricity and communication networks to market, and environmental and social mechanisms) is provided together with the necessary modelling tools and assumptions made in order to close the loop between the physical and the cyber layers. An example of a real-world industrial micro-grid that describes the main aspects of the proposed CPS-based design for modern electricity grids is also presented at the end of the paper to further explain and visualize the proposed framework.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Cyber-Physical-Social Energy System"

1

SCHIERA, DANIELE SALVATORE. « Towards Energy Systems Integration : a holistic methodology, software platform, and toolset for modelling and simulation of Cyber-Physical-Social Energy Systems ». Doctoral thesis, Politecnico di Torino, 2022. https://hdl.handle.net/11583/2973800.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Cyber-Physical-Social Energy System"

1

Cyber-Physical-Social Systems and Constructs in Electric Power Engineering. Institution of Engineering & Technology, 2016.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Cyber-Physical-Social Energy System"

1

Lukszo, Zofia, et Samira Farahani. « A Comprehensive Engineering Approach to Shaping the Future Energy System ». Dans Shaping an Inclusive Energy Transition, 245–58. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74586-8_11.

Texte intégral
Résumé :
AbstractThe urgency to significantly reduce the impacts of climate change is felt around the globe. By signing the Paris agreement in 2016, 195 governments have agreed on a long-term goal of keeping the increase in global average temperature below 2 °C above preindustrial levels and on aiming to limit the increase to 1.5 °C. To reach these goals, major technological, organizational, and social changes in different sectors and their services are needed. To understand and steer the transition from the current energy system towards a carbon-free energy system, we propose a comprehensive engineering framework that integrates different aspects, such as technical, economic, cyber-physical, social, institutional and political, that are needed in the design of such a complex system. We explain the importance of combining different disciplines to provide comprehensive models and tools in order to support and achieve a sustainable, affordable, reliable and inclusive energy transition.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Bhaduri, Budhendra, Ryan McManamay, Olufemi Omitaomu, Jibo Sanyal et Amy Rose. « Urban Energy Systems : Research at Oak Ridge National Laboratory ». Dans Urban Informatics, 281–308. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8983-6_18.

Texte intégral
Résumé :
AbstractIn the coming decades, our planet will witness unprecedented urban population growth in both established and emerging communities. The development and maintenance of urban infrastructures are highly energy-intensive. Urban areas are dictated by complex intersections among physical, engineered, and human dimensions that have significant implications for traffic congestion, emissions, and energy usage. In this chapter, we highlight recent research and development efforts at Oak Ridge National Laboratory (ORNL), the largest multipurpose science laboratory within the U.S. Department of Energy’s (DOE) national laboratory system, that characterizes the interactions between the human dynamics and critical infrastructures in conjunction with the integration of four distinct components: data, critical infrastructure models, and scalable computation and visualization, all within the context of physical and social systems. Discussions focus on four key topical themes: population and land use, sustainable mobility, the energy-water nexus, and urban resiliency, that are mutually aligned with DOE’s mission and ORNL’s signature science and technology capabilities. Using scalable computing, data visualization, and unique datasets from a variety of sources, the institute fosters innovative interdisciplinary research that integrates ORNL expertise in critical infrastructures including energy, water, transportation, and cyber, and their interactions with the human population.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Jain, Rachna. « Challenges and Applications of Cyber Physical Systems ». Dans Advances in Systems Analysis, Software Engineering, and High Performance Computing, 1–17. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-6721-0.ch001.

Texte intégral
Résumé :
Cyber physical systems integrate actuators or sensors with networking technologies. Latest innovations in the area lead to cyber social systems or cyber physical social systems. Industry 4.0 amalgamates all major technologies including internet of things, big data, cloud computing, and smart systems under CPS. Cyber physical systems comprise of physical layer devices connected to the internet. It has vast applications in the areas like manufacturing, healthcare, energy, automation, robotics, smart building, meteorology, and transportation. Cyber and physical components interaction, training and adaptation ability, interoperability using IoT devices, information security using firewalls and cryptosystems, system robustness, and intervention of human inside and out of the loop are the major focusing areas in any CPS. In this chapter, application areas and challenges faced by cyber physical systems are discussed in detail.
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Cyber-Physical-Social Energy System"

1

Zhang, Xiaodan, Bin Duan et Tao Li. « Cyber-Physical-Social Systems for Wind Power Operation and maintenance ». Dans 2019 IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2). IEEE, 2019. http://dx.doi.org/10.1109/ei247390.2019.9061828.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Xu, Xin, Deping Ke, Leqing Li et Bing Xu. « Optimal Charging Strategy for Heterogeneous EVs for Cyber-Physical-Social Systems ». Dans 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2). IEEE, 2018. http://dx.doi.org/10.1109/ei2.2018.8582386.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

You, Inuk, et Youjip Won. « Dynamic File System Migration for Energy Efficient Storage Management ». Dans Int'l Conference on Cyber, Physical and Social Computing (CPSCom). IEEE, 2010. http://dx.doi.org/10.1109/greencom-cpscom.2010.104.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Sun, Qifeng, Jiazhi Lei et Zhao Liu. « Optimal Allocation and Operation Strategies of Distributed Vanadium Redox Battery Energy Storage System ». Dans 2022 International Conference on Cyber-Physical Social Intelligence (ICCSI). IEEE, 2022. http://dx.doi.org/10.1109/iccsi55536.2022.9970695.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Meng, Shuai, Zhao Liu, Qifeng Sun, Hao Yang, Ning Zhou et Dongming Zhao. « An Optimal Voltage Support Control Strategy Considering Active Power Balance Based on Cascaded Energy Storage System ». Dans 2022 International Conference on Cyber-Physical Social Intelligence (ICCSI). IEEE, 2022. http://dx.doi.org/10.1109/iccsi55536.2022.9970610.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Duan, Bin, Yueping Chen, Tao Li et Junfeng Wu. « An Evaluation Method of Intelligent Wind Power Operation and Maintenance Based on Cyber-Physical-Social Systems ». Dans 2019 IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2). IEEE, 2019. http://dx.doi.org/10.1109/ei247390.2019.9062158.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Zhang, Xiaoshun, Zhao Xu et Tao Yu. « A Cyber-Physical-Social System with Parallel Learning for Distributed Energy Management of a Microgrid ». Dans 2018 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia). IEEE, 2018. http://dx.doi.org/10.1109/isgt-asia.2018.8467970.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Lee, Cheng-Ting, Cheng-Hsun Yang, Chun-Min Chang, Chung-Yi Kao, Hua-Min Tseng, Henpai Hsu et Pai H. Chou. « A Smart Energy System with Distributed Access Control ». Dans 2014 IEEE International Conference on Internet of Things(iThings), and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing(CPSCom). IEEE, 2014. http://dx.doi.org/10.1109/ithings.2014.17.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Liu, Xiaojing, Fangwei Ding, Jie Li, Haifeng Liu, Zhuo Yang, Juan Chen et Feng Xia. « PhoneJoule : An Energy Management System for Android-Based Smartphones ». Dans 2013 IEEE International Conference on Green Computing and Communications (GreenCom) and IEEE Internet of Things(iThings) and IEEE Cyber, Physical and Social Computing(CPSCom). IEEE, 2013. http://dx.doi.org/10.1109/greencom-ithings-cpscom.2013.374.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Wu, Chao-Lin, Wei-Chen Chen, Yi-Show Tseng, Li-Chen Fu et Ching-Hu Lu. « Anticipatory Reasoning for a Proactive Context-Aware Energy Saving System ». Dans 2014 IEEE International Conference on Internet of Things(iThings), and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing(CPSCom). IEEE, 2014. http://dx.doi.org/10.1109/ithings.2014.41.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie