Sommaire
Littérature scientifique sur le sujet « CXCL12/CXCR4 axi »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « CXCL12/CXCR4 axi ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "CXCL12/CXCR4 axi"
Tao, Zhengang, Ying Yuan et Qingwu Liao. « Alleviation of Lipopolysaccharides-Induced Acute Lung Injury by MiR-454 ». Cellular Physiology and Biochemistry 38, no 1 (2016) : 65–74. http://dx.doi.org/10.1159/000438609.
Texte intégralYao, Miao-En, Yi Huang, Qing-Qing Dong, Yi Lu et Wei Chen. « The Renshen Chishao Decoction Could Ameliorate the Acute Lung Injury but Could Not Reduce the Neutrophil Extracellular Traps Formation ». Evidence-Based Complementary and Alternative Medicine 2022 (29 août 2022) : 1–16. http://dx.doi.org/10.1155/2022/7784148.
Texte intégralHuang, Fei, Yunyi Lan, Liyue Qin, Huaihuai Dong, Hailian Shi, Hui Wu, Qinrui Zou, Zhibi Hu et Xiaojun Wu. « Astragaloside IV Promotes Adult Neurogenesis in Hippocampal Dentate Gyrus of Mouse through CXCL1/CXCR2 Signaling ». Molecules 23, no 9 (29 août 2018) : 2178. http://dx.doi.org/10.3390/molecules23092178.
Texte intégralAhuja, Nilesh, Ana Andres-Hernando, Christopher Altmann, Rhea Bhargava, Jasna Bacalja, Ryan G. Webb, Zhibin He, Charles L. Edelstein et Sarah Faubel. « Circulating IL-6 mediates lung injury via CXCL1 production after acute kidney injury in mice ». American Journal of Physiology-Renal Physiology 303, no 6 (15 septembre 2012) : F864—F872. http://dx.doi.org/10.1152/ajprenal.00025.2012.
Texte intégralZuk, A., M. Gershenovich, Y. Ivanova, R. T. MacFarland, S. P. Fricker et S. Ledbetter. « CXCR4 antagonism as a therapeutic approach to prevent acute kidney injury ». American Journal of Physiology-Renal Physiology 307, no 7 (1 octobre 2014) : F783—F797. http://dx.doi.org/10.1152/ajprenal.00685.2013.
Texte intégralLiu, Sheng, Jian Tang, Lei Huang, Qirong Xu, Xiang Ling et Jichun Liu. « Cordyceps Militaris Alleviates Severity of Murine Acute Lung Injury Through miRNAs-Mediated CXCR2 Inhibition ». Cellular Physiology and Biochemistry 36, no 5 (2015) : 2003–11. http://dx.doi.org/10.1159/000430168.
Texte intégralHolloman, Bryan L., Mitzi Nagarkatti et Prakash Nagarkatti. « Pulmonary macrophage activation and recruitment in lipopolysaccharide-induced acute lung injury mediates neutrophil infiltration : Role of AhR ligation in intervention ». Journal of Immunology 208, no 1_Supplement (1 mai 2022) : 105.36. http://dx.doi.org/10.4049/jimmunol.208.supp.105.36.
Texte intégralSu, Vincent Yi-Fong, Wei-Chih Chen, Wen-Kuang Yu, Huai-Hsuan Wu, Hao Chen et Kuang-Yao Yang. « Nintedanib Regulates GRK2 and CXCR2 to Reduce Neutrophil Recruitment in Endotoxin-Induced Lung Injury ». International Journal of Molecular Sciences 22, no 18 (13 septembre 2021) : 9898. http://dx.doi.org/10.3390/ijms22189898.
Texte intégralIwakura, Takamasa, Zhibo Zhao, Julian A. Marschner, Satish Kumar Devarapu, Hideo Yasuda et Hans Joachim Anders. « Dipeptidyl peptidase-4 inhibitor teneligliptin accelerates recovery from cisplatin-induced acute kidney injury by attenuating inflammation and promoting tubular regeneration ». Nephrology Dialysis Transplantation 34, no 10 (8 janvier 2019) : 1669–80. http://dx.doi.org/10.1093/ndt/gfy397.
Texte intégralLange, A., W. Witkiewicz, D. Dlubek, L. Maslowski, D. Drabczak-Skrzypek, E. Jaskula, B. Szymczak, D. Duda et J. Lange. « A Bone Marrow Population Containing Both Hematopoietic and Mesenchymal Stem Cells Constitutively Expressing Genes Pairs For : SDF1-CXCR4, CX3CL-CXCR1 and for VEGF Improves Vascularization When Implanted to Ischemic Legs. » Blood 104, no 11 (16 novembre 2004) : 4178. http://dx.doi.org/10.1182/blood.v104.11.4178.4178.
Texte intégralThèses sur le sujet "CXCL12/CXCR4 axi"
BIONDI, MARTA. « Enhancing AML CAR CIK therapeutic potency increasing the localization of engineered cells in the malignant niche and its selectivity by LSCs specific targeting ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/365153.
Texte intégralChimeric Antigen Receptor (CAR) T-cell therapy has produced remarkable clinical responses in patients affected by acute lymphoblastic leukemia. Unfortunately, CAR T-cells have not been equally successful in acute myeloid leukemia (AML) due to tumor heterogeneity, lack of truly AML-restricted target antigens and the role of leukemia microenvironment in blasts protection and leukemia stem cells (LSCs) maintenance. Specifically, the bone marrow (BM) niche, where LSCs reside, is involved in leukemia promoting activities whilst suppressing normal hematopoiesis. Therefore, we hypothesized that targeting LSCs at their location may enhance the potency and selectivity of CAR-T cells. To address this issue, we have designed two aims: 1) promote rapid and efficient localization of CAR T-cells within the BM niche, 2) select a leukemia-restricted antigen to specifically target AML blasts and LSCs. First, we proposed to harness CD33.CAR-redirected Cytokine-Induced Killer (CIK) cells, an alternative effector T-cell population with acquired NK-like cytotoxic activity as well as minimal alloreactivity, to selectively route their activity to leukemia transformed niche. The chemokine ligand 12 (CXCL12), released by mesenchymal stromal cells (MSCs) within the medullary niche, and its chemokine receptor 4 (CXCR4) are two pivotal players regulating leukocytes trafficking to the BM. In AML, CXCL12 interacts with CXCR4 overexpressed on blasts, promoting their migration and homing in the niche. Hence, taking advantage of this axis might facilitate CD33.CAR-CIK cells homing to the BM and therefore leukemia eradication. However, ex vivo manipulation protocols of CD33.CAR-CIK cells consistently downregulate CXCR4 expression and may affect the capacity of adoptively infused cells to migrate to BM and exert their anti-leukemic action. Therefore, to improve CD33.CAR-CIKs homing in the BM microenvironment we have developed CD33.CAR-CIK cells overexpressing CXCR4, in its wild-type or hyperactive mutant form. Notably, CIK cells engineering with CD33.CAR-CXCR4 constructs led to a consistent increase in CXCR4 expression, without altering CIK cells phenotype and CAR-related effector functions. Interestingly, compared to conventional CD33.CAR-CIK cells, CD33.CAR-CXCR4WT and especially CD33.CAR-CXCR4MUT-CIK cells demonstrated significantly superior in vitro chemotactic response toward CXCL12 and MSC-derived supernatants, and greater in vivo BM homing ability and persistence. Furthermore, to develop an effective anti-AML CAR T-cell therapy, it is fundamental to identify a LSC-specific marker, sparing the normal counterpart of hematopoietic stem cells (HSCs). T-cell immunoglobulin and mucin protein 3 (TIM-3) is an immune checkpoint molecule, it plays a central role in immune responses in AML and it is an LSC-specific marker, lacking expression on HSCs. Therefore, we designed a third-generation anti-TIM-3.CAR using the single-chain fragment variable (scFv) derived from an antagonistic ligand-blocking anti-TIM-3 antibody. In vitro, TIM-3.CAR-CIK cells efficiently killed both AML cell lines and primary AML blasts, but not normal TIM-3+ activated CIK cells, monocytes and NK-cells. Notably, we observed selective elimination of primary LSC-enriched population (CD34+ CD38-). Furthermore, TIM-3.CAR-CIK cells maintained their effector functions despite multiple in vitro restimulations, setting the basis for further exploration in in vivo models. Overall, both approaches, one improving CAR-CIK cells homing to the transformed niche and the other conferring superior safety and selectivity, might improve the efficacy of anti-AML CAR-CIK therapy.
SOLARI, AGNESE. « CXCR4/CXCR7-CXCL11/CXCL12 AXIS PROMOTES MALIGNANT PHENOTYPE IN PUTATIVE STEM CELLS FROM HUMAN MENINGIOMAS ». Doctoral thesis, Università degli studi di Genova, 2019. http://hdl.handle.net/11567/946169.
Texte intégralMikami, Sakae. « Blockade of CXCL12/CXCR4 axis ameliorates murine experimental colitis ». Kyoto University, 2009. http://hdl.handle.net/2433/124258.
Texte intégralOgawa, Ryotaro. « Loss of SMAD4 Promotes Colorectal Cancer Progression by Recruiting Tumor-Associated Neutrophils via the CXCL1/8-CXCR2 Axis ». Kyoto University, 2019. http://hdl.handle.net/2433/245315.
Texte intégralGoh, Poh. « Roles of protein kinase C and arrestin in migration of cells via CXCR4/CXCL12 signalling axis ». Thesis, University of East Anglia, 2018. https://ueaeprints.uea.ac.uk/67806/.
Texte intégralChow, Yan Ching Ken. « Role and Molecular Basis of the CXCL12-signalling Axis in the Pathogenesis of WHIM syndrome and the carcinogenesis associated with human papillomavirus (HPV) infection ». Paris 7, 2008. http://www.theses.fr/2008PA077129.
Texte intégralThe WHIM syndrome (WS) is a rare immunodeficiency characterised by severe leukoneutropenia (e. G. Myelokathexis) and profuse human papillomavirus (HPV)-associated skin lesions and malignant ano-genital cohdyloma. The disease links to dysfunctions of the CXCR4 chemokine receptor in response to its ligand SDF-1/CXCL12, and associates in many cases to heterozygous mutations causing truncation in the cytoplasmic tail of the receptor that is important for the β-arrestin (βarr)-mediated receptor desensitisation process. Such truncated receptor (e. G. CXCR4¹º¹³) displays no desensitisation and thus manifests a gain of function in response to CXCL12 in leukocytes derived from WS patients, which likely contribute to the pathogenesis of the disorder. In this study, we demonstrated that such dysfunctions are in fact dependent on an unexpected interaction between βarr2 and CXCR4¹º¹³. Upon CXCL12 stimulation, the CXCR4¹º¹³receptor displays an augmented and prolonged |3arr2-dépendent signalling that relies on the integrity of the third intracellular loop of the receptor. We have also observed the existence of CXCR4wt/CXCR4¹º¹³ heterodimer from which the possible enhanced parr2/CXCR4¹º¹³ interaction may contribute to the augmented response of the receptor to CXCL12. With the abnormal expression of CXCL12 we observed in HPV-induced lesions derived from both WS and non-WS patients, and the critical role of the chemokine in tumor growth and metastasis, we speculate on the existence of an HPV/CXCL12 interplay that could be crucial for the viral-mediated pathogenesis. Using keratinocytes immortalised by the subgenomic fragment of high-risk HPV, we showed an HPV-E6/7-dependent expression of CXCL12 and its receptors and the critical role of this signalling axis in the prolifération and motility of these cells. In WS, such HPV/CXCL12-interplay may synergise with the hyperfunctioning of CXCR4, and contribute to the malignant development of ano-genital condyloma that is unusually associated with low-risk HPV - the only viral subtype we identified in these lesions
Swidenbank, Isabella. « The role of the CXCR4-CXCL12 chemokine axis in melanoma metastasis to the normal and fibrotic liver ». Thesis, University of Newcastle upon Tyne, 2014. http://hdl.handle.net/10443/2612.
Texte intégralRondeau, Vincent. « Rôle de la désensibilisation de CXCR4 dans la spécification lympho-myéloïde des progéniteurs hématopoïétiques multipotents. Lymphoid differentiation of hematopoietic stem cells requires efficient Cxcr4 desensitization New method to obtain lymphoid progenitors CXCR4-driven mitochondrial metabolic pathways shape the lympho-myeloid fate of hematopoietic multipotent progenitors ». Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASQ022.
Texte intégralHematopoietic stem and progenitor cells (HSPCs), including the multipotent progenitors (MPPs), are responsible for replenishing immune cells. They reside in bone marrow (BM) endosteal and (peri)-vascular niches, which provide all cellular and molecular components required for their lifelong maintenance and fate. Among them, the CXCL12 chemokine and one of its receptor, CXCR4, exert a dominant role in promoting HSPC retention and quiescence. These processes are deregulated in the WHIM Syndrome (WS), a rare immunodeficiency caused by inherited heterozygous autosomal gain-of-function CXCR4 mutations that affect homologous desensitization of the receptor. Clinically, WS is notably characterized by severe, chronic circulating lymphopenia whose mechanisms remain to be elucidated. Using a mouse model carrying a naturally occurring WS-linked Cxcr4 mutation as well as human BM and blood samples, we explored the possibility that the lymphopenia in WS originates from defects at the HSPC level in BM. We reported that Cxcr4 desensitization is required for lymphoid differentiation of HSPCs and further identified the MPP stage as defective in mutant mice. The divergence between lymphoid and myeloid lineages occurs at the MPP stage, which is composed of distinct subpopulations, i.e., MPP2 and MPP3 are reported as distinct myeloid-biased MPP subsets that operate together with lymphoid-primed MPP4 to control blood leukocyte production. Our understanding of how cell-extrinsic niche-related and cell-intrinsic cues drive the lymphoid versus myeloid fate decision of MPPs is still fragmentary. Therefore, my PhD project aimed at determining whether and how CXCR4 signaling regulates bioenergetics demands of MPPs and at understanding how these metabolic pathways shape the lympho-myeloid fate of MPPs. We unraveled a myeloid skewing of the HSPC compartment in BM of WS mice and patients. In mutant mice, this partly relied on the contraction of the MPP4 pool and on cell-autonomous molecular and metabolic changes that reprogramed MPP4 away from lymphoid differentiation. Interestingly, chronic treatment with the CXCR4 antagonist AMD3100 normalized mitochondrial metabolism and fate of MPP4, while correcting circulating lymphopenia in WS mice. This study provides evidence that CXCR4 signaling acts as an essential gatekeeper for integrity of the mitochondrial machinery, which in turn controls lymphoid potential of MPP4
Li, Yin [Verfasser], Andreas [Akademischer Betreuer] Knopf, Murat [Gutachter] Bas et Andreas [Gutachter] Knopf. « CXCR4-CXCL12 axis in head and neck squamous cell carcinoma regarding HPV status / Yin Li ; Gutachter : Murat Bas, Andreas Knopf ; Betreuer : Andreas Knopf ». München : Universitätsbibliothek der TU München, 2021. http://d-nb.info/1236343069/34.
Texte intégralPatil, Ashwini [Verfasser], et Joachim [Akademischer Betreuer] Göthert. « The CXCL10/CXCR3 axis cross-talk between emerging T cell acute lymphoblastic leukemia and thymic epithelial cells / Ashwini Patil ; Betreuer : Joachim Göthert ». Duisburg, 2021. http://d-nb.info/1225294649/34.
Texte intégralActes de conférences sur le sujet "CXCL12/CXCR4 axi"
Costello, Christine M., Brian McCullagh, Katherine Howell, John A. Belperio, Michael P. Keane, Sean P. Gaine et Paul McLoughlin. « A Role For The CXCL12/CXCR7/CXCR4 Axis In Pulmonary Hypertension ». Dans American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado. American Thoracic Society, 2011. http://dx.doi.org/10.1164/ajrccm-conference.2011.183.1_meetingabstracts.a3399.
Texte intégralClements, D., LM Markwick et SR Johnson. « The CXCR4/CXCL12 Axis in Lymphangioleiomyomatosis. » Dans American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a4350.
Texte intégralYu, Minghuan, et Mary A. Kosir. « Abstract 5276 : CXCL7/CXCR2 axis and invasion ». Dans Proceedings : AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010 ; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-5276.
Texte intégralBalthazar, L., M. Cebo, J. Rheinlaender, D. Rath, M. Gawaz, T. E. Schäffer, M. Lämmerhofer et M. Chatterjee. « Platelet Lipidome and Lipid Induced Thromboinflammatory Actions are Influenced by the CXCL12-CXCR4-CXCR7 Axis ». Dans 63rd Annual Meeting of the Society of Thrombosis and Haemostasis Research. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-1680094.
Texte intégralBalthazar, L., M. Cebo, J. Rheinlaender, D. Rath, M. Gawaz, T. E. Schäffer, M. Lämmerhofer et M. Chatterjee. « Platelet Lipidome and Lipid Induced Thromboinflammatory Actions are Influenced by the CXCL12-CXCR4-CXCR7 Axis ». Dans 63rd Annual Meeting of the Society of Thrombosis and Haemostasis Research. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-1680195.
Texte intégralD'Alterio, Crescenzo, Antonio Avallone, Paolo Delrio, Fabiana Tatangelo, Biagio Pecori, Elena Di Gennaro, Rosario Vincenzo Iaffaioli, Paolo Muto, Gerardo Botti et Stefania Scala. « Abstract 1145 : CXCR4-CXCL12-CXCR7 axis predicts prognosis in locally advanced-Chemo Radiotherapy (CRT) treated rectal cancer patients. » Dans Proceedings : AACR 104th Annual Meeting 2013 ; Apr 6-10, 2013 ; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-1145.
Texte intégralSingh, Seema, Sudha Talwar, Sanjeev Srivastava, Sarah Braune, Laurie B. Owen et Ajay P. Singh. « Abstract 5378 : Targeting CXCL12/CXCR4 signaling axis for pancreatic cancer therapy ». Dans Proceedings : AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010 ; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-5378.
Texte intégralMei, Junjie, Yuhong Liu, Ning Dai, Kristin M. Hudock, Susan H. Guttentag, Jay K. Kolls, G. Scott Worthen et Paula M. Oliver. « CXCR2 And CXCL5 Regulate IL-17/G-CSF Axis And Neutrophil Homeostasis ». Dans American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a1067.
Texte intégralRiveiro, Maria E., Maria Serova, Safi Dokmak, Ivan Bieche, Sebastien Albert, Caroline Halini, Eric Raymond et Sandrine Faivre. « Abstract 4264 : CXCL12-CXCR4 axis in sunitinib-sensitive and -resistant hepatocarcinoma cells ». Dans Proceedings : AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011 ; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-4264.
Texte intégralZhilin-Roth, Alisa, et Jill A. Macoska. « Abstract 2021 : The CXCL12/CXCR4 axis drives epithelial-mesenchymal transition in renal cell carcinoma ». Dans Proceedings : AACR Annual Meeting 2018 ; April 14-18, 2018 ; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-2021.
Texte intégral