Littérature scientifique sur le sujet « CT quantification »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « CT quantification ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "CT quantification"
Ferrando, Ornella, Alessandro Chimenz, Franca Foppiano et Andrea Ciarmiello. « SPECT/CT activity quantification in 99mTc-MAA acquisitions. » Journal of Diagnostic Imaging in Therapy 5, no 1 (24 juin 2018) : 32–36. http://dx.doi.org/10.17229/jdit.2018-0624-034.
Texte intégralFerrando, Ornella, Franca Foppiano, Tindaro Scolaro, Chiara Gaeta et Andrea Ciarmiello. « PET/CT images quantification for diagnostics and radiotherapy applications ». Journal of Diagnostic Imaging in Therapy 2, no 1 (16 février 2015) : 18–29. http://dx.doi.org/10.17229/jdit.2015-0216-013.
Texte intégralDo, Synho, Kristen Salvaggio, Supriya Gupta, Mannudeep Kalra, Nabeel U. Ali et Homer Pien. « Automated Quantification of Pneumothorax in CT ». Computational and Mathematical Methods in Medicine 2012 (2012) : 1–7. http://dx.doi.org/10.1155/2012/736320.
Texte intégralMorsbach, Fabian, Lotus Desbiolles, André Plass, Sebastian Leschka, Bernhard Schmidt, Volkmar Falk, Hatem Alkadhi et Paul Stolzmann. « Stenosis Quantification in Coronary CT Angiography ». Investigative Radiology 48, no 1 (janvier 2013) : 32–40. http://dx.doi.org/10.1097/rli.0b013e318274cf82.
Texte intégralErlandsson, K., D. Visvikis, W. A. Waddington, I. D. Cullum et G. Davies. « 39. Absolute quantification with hybrid PET/CT and SPET/CT systems ». Nuclear Medicine Communications 24, no 4 (avril 2003) : 456–57. http://dx.doi.org/10.1097/00006231-200304000-00058.
Texte intégralBovenschulte, H., B. Krug, T. Schneider, H. Schwabe, C. Kabbasch, C. Bangard, M. Hellmich, G. Michels, D. Maintz et K. Lackner. « CT coronary angiography : Coronary CT-flow quantification supplements morphological stenosis analysis ». European Journal of Radiology 82, no 4 (avril 2013) : 608–16. http://dx.doi.org/10.1016/j.ejrad.2012.08.004.
Texte intégralIm, Won Hyeong, Gong Yong Jin, Young Min Han et Eun Young Kim. « CT Quantification of Central Airway in Tracheobronchomalacia ». Journal of the Korean Society of Radiology 74, no 5 (2016) : 299. http://dx.doi.org/10.3348/jksr.2016.74.5.299.
Texte intégralWilliams, Michelle C., et David E. Newby. « CT myocardial perfusion : a step towards quantification ». Heart 98, no 7 (15 mars 2012) : 521–22. http://dx.doi.org/10.1136/heartjnl-2012-301677.
Texte intégralMawlawi, Osama, S. Kappadath, Tinsu Pan, Eric Rohren et Homer Macapinlac. « Factors Affecting Quantification in PET/CT Imaging ». Current Medical Imaging Reviews 4, no 1 (1 février 2008) : 34–45. http://dx.doi.org/10.2174/157340508783502778.
Texte intégralAntunovic, Lidija, Marcello Rodari, Pietro Rossi et Arturo Chiti. « Standardization and Quantification in PET/CT Imaging ». PET Clinics 9, no 3 (juillet 2014) : 259–66. http://dx.doi.org/10.1016/j.cpet.2014.03.002.
Texte intégralThèses sur le sujet "CT quantification"
Robertson, Galen Charles. « Quantification of Skeletal Phenotype Using Micro-CT and Mechanical Testing ». Thesis, Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/4874.
Texte intégralChakraborty, Chandrani. « Quantification of respiratory motion in PET/CT and its significance in radiation therapy ». Oklahoma City : [s.n.], 2008.
Trouver le texte intégralUribe, Muñoz Carlos Felipe. « SPECT/CT quantification of ¹⁷⁷Lu for dosimetry in radionuclide therapy treatments of neuroendocrine tumors ». Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/56822.
Texte intégralScience, Faculty of
Physics and Astronomy, Department of
Graduate
Jawaid, M. M. « Detection, localization and quantification of non-calcified coronary plaques in contrast enhanced CT angiography ». Thesis, City, University of London, 2017. http://openaccess.city.ac.uk/19157/.
Texte intégralMelki, Imen. « Towards an automated framework for coronary lesions detection and quantification in cardiac CT angiography ». Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1022/document.
Texte intégralCoronary heart diseases are the group of disorders that affect the coronary artery vessels. They are the world's leading cause of mortality. Therefore, early detection of these diseases using less invasive techniques provides better therapeutic outcome, as well as reduces costs and risks, compared to an interventionist approach. Recent studies showed that X-ray computed tomography (CT) may be used as an alternative to accurately locate and grade heart lesions in a non invasive way. However, analysis of cardiac CT exam for coronaries lesions inspection remains a tedious and time consuming task, as it is based on the manual analysis of the vessel cross sections. High accuracy is required, and thus only highly experienced clinicians are able to analyze and interpret the data for diagnosis. Computerized tools are critical to reduce processing time and ensure quality of diagnostics. The goal of this thesis is to provide automated coronaries analysis tools to help in non-invasive CT angiography examination. Such tools allow pathologists to efficiently diagnose and evaluate risks associated with CVDs, and to raise the quality of the assessment from a purely qualitative level to a quantitative level. The first objective of our work is to design, analyze and validate a set of automated algorithms for coronary arteries analysis with the final purpose of automated stenoses detection and quantification. We propose different algorithms covering different processing steps towards a fully automated analysis of the coronary arteries. Our contribution covers the three major blocks of the whole processing chain and deals with different image processing fields. First, we present an algorithm dedicated to heart volume extraction. The approach extracts the heart as one single object that can be used as an input masque for automated coronary arteries segmentation. This work eliminates the tedious and time consuming step of manual removing obscuring structures around the heart (lungs, ribs, sternum, liver...) and quickly provides a clear and well defined view of the coronaries. This approach uses a geometric model of the heart that is fitted and adapted to the image data. Quantitative and qualitative analysis of results obtained on a 114 exam database shows the efficiency and the accuracy of this approach. Second, we were interested to the problem of coronary arteries enhancement and segmentation. In this context, we first designed a novel approach for coronaries enhancement that combines robust path openings and component tree filtering. The approach showed promising results on a set of 11 CT exam compared to a Hessian based approach. For a robust stenoses detection and quantification, a precise and accurate lumen segmentation is crucial. Therefore, we have dedicated a part of our work to the improvement of lumen segmentation step based on vessel statistics. Validation on the Rotterdam Coronary Challenge showed that this approach provides state of the art performances. Finally, the major core of this thesis is dedicated to the issue of stenosis detection and quantification. Two different approaches are designed and evaluated using the Rotterdam online evaluation framework. The first approach get uses of the lumen segmentation with some geometric and intensity features to extract the coronary stenosis. The second is using a learning based approach for stenosis detection and stenosis. The second approach outperforms some of the state of the art works with reference to some metrics. This thesis results in a prototype for automated coronary arteries analysis and stenosis detection and quantification that meets the level of required performances for a clinical use. The prototype was qualitatively and quantitatively validated on different sets of cardiac CT exams
Ainslie-McLaren, Gillian. « Assessment of somatostatin image quantification with SPET and SPET-CT to aid characterisation of disease ». Thesis, University of Glasgow, 2012. http://theses.gla.ac.uk/3179/.
Texte intégralWang, Yin. « Blood vessel segmentation and shape analysis for quantification of coronary artery stenosis in CT angiography ». Thesis, City University London, 2011. http://openaccess.city.ac.uk/1186/.
Texte intégralGALLIVANONE, FRANCESCA. « Quantification methods for PET/CT oncological studies and correlation approacches with proteomic and hystological data ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2011. http://hdl.handle.net/10281/19696.
Texte intégralVallot, Delphine. « Reconstruction adaptative optimisée pour la quantification en tomographie de positons couplée à un tomodensitomètre ». Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30188.
Texte intégralThis study was initiated to evaluate an iterative reconstruction algorithm in positron emission tomography based on a regularization method to obtain convergence. Our aim was to assess its performance, in comparison with other currently available algorithms and to study the impact of the only parameter available to users for eventual optimization, both using anthropomorphic phantoms and clinical data. We confirm that this algorithm shows several advantages compared to the traditional OSEM-MLEM concerning noise, contrast and detectability. By using anthropomorphic phantoms and with access to more reconstruction parameters, the performance could be further improved to decrease the artefacts and the overestimation of certain metrics. Work in progress
Morales, Pinzon Alfredo. « Lung segmentation and airway tree matching : application to aeration quantification in CT images of subjects with ARDS ». Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1019/document.
Texte intégralAcute Respiratory Distress Syndrome (ARDS) is a life threatening disease presenting a high mortality of about 40% in intensive care units. It is the consequence of different pulmonary aggressions generating hypoxemia and pulmonary edema, which are radiologically expressed as infiltrations observable as opaque regions in the lung. The treatment of ARDS requires mechanical ventilation, which may deteriorate the state of the patient if the ventilation parameters, namely volume and pressure, are not correctly adjusted. To adjust the parameter settings to each individual case, lung aeration - in response to ventilation - needs to be assessed. This assessment can be done using computed tomography (CT) images. However, it requires the segmentation of the lung-parenchymal tissue, which is a challenging task in ARDS images due the opacities that hinder the image contrast. In this thesis we aim to provide the required tools for the experts to analyze the aeration in the images acquired within an ARDS project using an animal model
Livres sur le sujet "CT quantification"
Morrison, Alan R., Joseph C. Wu et Mehran M. Sadeghi. Cardiovascular Molecular Imaging. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199392094.003.0029.
Texte intégralChapitres de livres sur le sujet "CT quantification"
Samei, Ehsan, et Jocelyn Hoye. « CT-Based Quantification ». Dans Computed Tomography, 289–304. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26957-9_15.
Texte intégralUlzheimer, Stefan, Kaiss Shanneik et Willi A. Kalender. « Noninvasive Quantification of Coronary Calcium ». Dans CT of the Heart, 129–41. Totowa, NJ : Humana Press, 2005. http://dx.doi.org/10.1385/1-59259-818-8:129.
Texte intégralSchmermund, Axel, Stefan Möhlenkamp et Raimund Erbel. « Detection and Quantification of Coronary Calcium With Electron Beam CT ». Dans CT of the Heart, 83–89. Totowa, NJ : Humana Press, 2005. http://dx.doi.org/10.1385/1-59259-818-8:083.
Texte intégralShemesh, Joseph. « Detection and Quantification of Coronary Calcium With Dual-Slice CT ». Dans CT of the Heart, 91–99. Totowa, NJ : Humana Press, 2005. http://dx.doi.org/10.1385/1-59259-818-8:091.
Texte intégralCarr, J. Jeffrey. « Detection and Quantification of Calcified Coronary Plaque With Multidetector-Row CT ». Dans CT of the Heart, 101–10. Totowa, NJ : Humana Press, 2005. http://dx.doi.org/10.1385/1-59259-818-8:101.
Texte intégralGoo, Jin Mo. « Computer-Aided Diagnosis and Quantification in Chest CT ». Dans Multidetector-Row CT of the Thorax, 431–49. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30355-0_22.
Texte intégralRojulpote, Chaitanya S., et Paco E. Bravo. « Myocardial Blood Flow Quantification with PET/CT : Applications ». Dans Hybrid Cardiac Imaging, 133–49. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83167-7_8.
Texte intégralGevenois, P. A., P. De Vuyst, M. Littani, J. Zanen, P. de Franquen, J. C. Yernault et J. Struyven. « CT Quantification of Pulmonary Emphysema — Correlation with Pulmonary Function Tests : Preliminary Results on 15 Patients ». Dans Advances in CT II, 3–7. Berlin, Heidelberg : Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77463-8_1.
Texte intégralWeinheimer, Oliver, Tobias Achenbach, Christian Buschsiewke, Claus Peter Heussel, Thomas Uthmann et Hans-Ulrich Kauczor. « Quantification and Characterization of Pulmonary Emphysema in Multislice-CT ». Dans Medical Data Analysis, 75–82. Berlin, Heidelberg : Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-39619-2_10.
Texte intégralSørensen, Lauge, Marco Loog, Pechin Lo, Haseem Ashraf, Asger Dirksen, Robert P. W. Duin et Marleen de Bruijne. « Image Dissimilarity-Based Quantification of Lung Disease from CT ». Dans Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010, 37–44. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15705-9_5.
Texte intégralActes de conférences sur le sujet "CT quantification"
Figl, Michael, Romana Fragner, Patrick Heimel, Christian Loewe et Wolfgang Birkfellner. « Streak artefact quantification for abdominal CT ». Dans SPIE Medical Imaging, sous la direction de David J. Manning et Craig K. Abbey. SPIE, 2011. http://dx.doi.org/10.1117/12.878577.
Texte intégralBandekar, Alok N., Morteza Naghavi et Ioannis A. Kakadiaris. « Automated Pericardial Fat Quantification in CT Data ». Dans Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.259259.
Texte intégralBandekar, Alok N., Morteza Naghavi et Ioannis A. Kakadiaris. « Automated Pericardial Fat Quantification in CT Data ». Dans Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.4397556.
Texte intégralParui, Sweta, Nilotpal Das et Monisha Chakraborty. « CT Based Histogram Assisted Emphysema Severity Quantification ». Dans 2021 6th International Conference for Convergence in Technology (I2CT). IEEE, 2021. http://dx.doi.org/10.1109/i2ct51068.2021.9418103.
Texte intégralPersson, Mats, Bettina Meyer, Hans Bornefalk et Mats Danielsson. « Quantification of ring artifact visibility in CT ». Dans SPIE Medical Imaging, sous la direction de Norbert J. Pelc, Robert M. Nishikawa et Bruce R. Whiting. SPIE, 2012. http://dx.doi.org/10.1117/12.910537.
Texte intégralShechter, Gilad, Axel Thran et Tsvi Katchalski. « Accurate material quantification in dual energy CT ». Dans SPIE Medical Imaging, sous la direction de Norbert J. Pelc, Robert M. Nishikawa et Bruce R. Whiting. SPIE, 2012. http://dx.doi.org/10.1117/12.911291.
Texte intégralMallya, Yogish, A. K. Narayanan et Lyubomir Zagorchev. « Automatic quantification of neo-vasculature from micro-CT ». Dans SPIE Medical Imaging, sous la direction de Josien P. W. Pluim et Benoit M. Dawant. SPIE, 2009. http://dx.doi.org/10.1117/12.811162.
Texte intégralStraumit, Ilya, Stepan V. Lomov et Martine Wevers. « Quantification of micro-CT images of textile reinforcements ». Dans PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF GLOBAL NETWORK FOR INNOVATIVE TECHNOLOGY AND AWAM INTERNATIONAL CONFERENCE IN CIVIL ENGINEERING (IGNITE-AICCE’17) : Sustainable Technology And Practice For Infrastructure and Community Resilience. Author(s), 2017. http://dx.doi.org/10.1063/1.5008000.
Texte intégralGonzalez, Andres, Mehdi Teymouri, Zoya Heidari et Olivier Lopez. « ANISOTROPY QUANTIFICATION USING HIGH-RESOLUTION WHOLE-CORE CT-SCAN IMAGES ». Dans 2021 SPWLA 62nd Annual Logging Symposium Online. Society of Petrophysicists and Well Log Analysts, 2021. http://dx.doi.org/10.30632/spwla-2021-0087.
Texte intégralLiu, Shuang, Emily B. Sonnenblick, Lea Azour, David F. Yankelevitz, Claudia I. Henschke et Anthony P. Reeves. « Fully automated gynecomastia quantification from low-dose chest CT ». Dans Computer-Aided Diagnosis, sous la direction de Kensaku Mori et Nicholas Petrick. SPIE, 2018. http://dx.doi.org/10.1117/12.2293852.
Texte intégralRapports d'organisations sur le sujet "CT quantification"
Sanchez, Maria Ambert. Quantification of Soil Physical Properties by Using X-Ray Computerized Tomography (CT) and Standard Laboratory (STD) Methods. Office of Scientific and Technical Information (OSTI), décembre 2003. http://dx.doi.org/10.2172/822059.
Texte intégral