Littérature scientifique sur le sujet « Cross-Lingual Mapping »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Cross-Lingual Mapping ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Cross-Lingual Mapping"
Fu, Zuohui, Yikun Xian, Shijie Geng, Yingqiang Ge, Yuting Wang, Xin Dong, Guang Wang et Gerard De Melo. « ABSent : Cross-Lingual Sentence Representation Mapping with Bidirectional GANs ». Proceedings of the AAAI Conference on Artificial Intelligence 34, no 05 (3 avril 2020) : 7756–63. http://dx.doi.org/10.1609/aaai.v34i05.6279.
Texte intégralGao, Jiahui, Yi Zhou, Philip L. H. Yu, Shafiq Joty et Jiuxiang Gu. « UNISON : Unpaired Cross-Lingual Image Captioning ». Proceedings of the AAAI Conference on Artificial Intelligence 36, no 10 (28 juin 2022) : 10654–62. http://dx.doi.org/10.1609/aaai.v36i10.21310.
Texte intégralLi, Juntao, Chang Liu, Jian Wang, Lidong Bing, Hongsong Li, Xiaozhong Liu, Dongyan Zhao et Rui Yan. « Cross-Lingual Low-Resource Set-to-Description Retrieval for Global E-Commerce ». Proceedings of the AAAI Conference on Artificial Intelligence 34, no 05 (3 avril 2020) : 8212–19. http://dx.doi.org/10.1609/aaai.v34i05.6335.
Texte intégralAbu Helou, Mamoun, Matteo Palmonari et Mustafa Jarrar. « Effectiveness of Automatic Translations for Cross-Lingual Ontology Mapping ». Journal of Artificial Intelligence Research 55 (25 janvier 2016) : 165–208. http://dx.doi.org/10.1613/jair.4789.
Texte intégralSong, Yuting, Biligsaikhan Batjargal et Akira Maeda. « Learning Japanese-English Bilingual Word Embeddings by Using Language Specificity ». International Journal of Asian Language Processing 30, no 03 (septembre 2020) : 2050014. http://dx.doi.org/10.1142/s2717554520500149.
Texte intégralFu, Bo, Rob Brennan et Declan O’Sullivan. « A configurable translation-based cross-lingual ontology mapping system to adjust mapping outcomes ». Journal of Web Semantics 15 (septembre 2012) : 15–36. http://dx.doi.org/10.1016/j.websem.2012.06.001.
Texte intégralRobnik-Šikonja, Marko, Kristjan Reba et Igor Mozetič. « Cross-lingual transfer of sentiment classifiers ». Slovenščina 2.0 : empirical, applied and interdisciplinary research 9, no 1 (6 juillet 2021) : 1–25. http://dx.doi.org/10.4312/slo2.0.2021.1.1-25.
Texte intégralBhowmik, Kowshik, et Anca Ralescu. « Clustering of Monolingual Embedding Spaces ». Digital 3, no 1 (23 février 2023) : 48–66. http://dx.doi.org/10.3390/digital3010004.
Texte intégralDO, Van Hai, Xiong XIAO, Eng Siong CHNG et Haizhou LI. « Cross-Lingual Phone Mapping for Large Vocabulary Speech Recognition of Under-Resourced Languages ». IEICE Transactions on Information and Systems E97.D, no 2 (2014) : 285–95. http://dx.doi.org/10.1587/transinf.e97.d.285.
Texte intégralShi, Xiayang, Ping Yue, Xinyi Liu, Chun Xu et Lin Xu. « Obtaining Parallel Sentences in Low-Resource Language Pairs with Minimal Supervision ». Computational Intelligence and Neuroscience 2022 (3 août 2022) : 1–9. http://dx.doi.org/10.1155/2022/5296946.
Texte intégralThèses sur le sujet "Cross-Lingual Mapping"
ABU, HELOU MAMOUN. « Cross-Lingual Mapping of Lexical Ontologies with Automatic Translation ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2016. http://hdl.handle.net/10281/102411.
Texte intégralIn the Web, multilingual data are growing fast and exist in a large number of sources. \emph{Ontologies} have been proposed for the ease of data exchange and integration across applications. When data sources using different ontologies have to be integrated, mappings between the concepts described in these ontologies have to be established. \emph{Cross-lingual ontology mapping} is the task of establishing mappings between concepts lexicalized in different languages. Cross-lingual ontology mapping is currently considered an important challenge, which plays a fundamental role in establishing semantic relations between concepts lexicalized in different languages, in order to align two language-based resources; to create multilingual lexical resources with rich lexicalizations; or to support a bilingual data annotation. Most of the cross-lingual mapping methods include a step in which the concepts' lexicalizations are automatically translated into different languages. One of the most frequently adopted approaches in the state-of-the-art to obtain automatic translations includes the use of \textit{multilingual lexical resources}, such as machine translation tools, which have been recognized as the largest available resources for translations. However, translation quality achieved by machine translation is limited and affected by noise; one reason of this quality is due to the polysemous and synonymous nature of natural languages. The quality of the translations used by a mapping method has a major impact on its performance. The main goal of this thesis is to provide an automatic cross-lingual mapping method that leverages lexical evidence obtained from automatic translations, in order to automatically support the decision in mapping concepts across different languages, or even to support semi-automatic mapping workflows. In particular, in establishing mappings between very large, lexically-rich resources, e.g., lexical ontologies. The major contributions of this thesis can be summarized as follows: I presents a classification-based interpretation for cross-lingual mappings; I analyze at a large-scale the effectiveness of automatic translations on cross-lingual mapping tasks; I classifies concepts in lexical ontologies based on different lexical characteristics; I proposes an automatic cross-lingual lexical mapping method based on a novel translation-based similarity measure and a local similarity optimization algorithm; finally, I implements a Web tool that supports a semi-automatic mapping approach based on the proposed method.
Landegren, Nils. « How Sensitive Are Cross-Lingual Mappings to Data-Specific Factors ? » Thesis, Stockholms universitet, Institutionen för lingvistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-185069.
Texte intégralLesnikova, Tatiana. « Liage de données RDF : évaluation d'approches interlingues ». Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAM011/document.
Texte intégralThe Semantic Web extends the Web by publishing structured and interlinked data using RDF.An RDF data set is a graph where resources are nodes labelled in natural languages. One of the key challenges of linked data is to be able to discover links across RDF data sets. Given two data sets, equivalent resources should be identified and linked by owl:sameAs links. This problem is particularly difficult when resources are described in different natural languages.This thesis investigates the effectiveness of linguistic resources for interlinking RDF data sets. For this purpose, we introduce a general framework in which each RDF resource is represented as a virtual document containing text information of neighboring nodes. The context of a resource are the labels of the neighboring nodes. Once virtual documents are created, they are projected in the same space in order to be compared. This can be achieved by using machine translation or multilingual lexical resources. Once documents are in the same space, similarity measures to find identical resources are applied. Similarity between elements of this space is taken for similarity between RDF resources.We performed evaluation of cross-lingual techniques within the proposed framework. We experimentally evaluate different methods for linking RDF data. In particular, two strategies are explored: applying machine translation or using references to multilingual resources. Overall, evaluation shows the effectiveness of cross-lingual string-based approaches for linking RDF resources expressed in different languages. The methods have been evaluated on resources in English, Chinese, French and German. The best performance (over 0.90 F-measure) was obtained by the machine translation approach. This shows that the similarity-based method can be successfully applied on RDF resources independently of their type (named entities or thesauri concepts). The best experimental results involving just a pair of languages demonstrated the usefulness of such techniques for interlinking RDF resources cross-lingually
Chapitres de livres sur le sujet "Cross-Lingual Mapping"
Ayana, Abraham G., Hailong Cao et Tiejun Zhao. « Unsupervised Cross-Lingual Mapping for Phrase Embedding Spaces ». Dans Advances in Intelligent Systems and Computing, 512–24. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39442-4_38.
Texte intégralFu, Bo, Rob Brennan et Declan O’Sullivan. « Using Pseudo Feedback to Improve Cross-Lingual Ontology Mapping ». Dans Lecture Notes in Computer Science, 336–51. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21034-1_23.
Texte intégralMegawati, Saemi Jang et Mun Yong Yi. « Utilization of DBpedia Mapping in Cross Lingual Wikipedia Infobox Completion ». Dans AI 2016 : Advances in Artificial Intelligence, 303–16. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-50127-7_25.
Texte intégralAbu Helou, Mamoun, et Matteo Palmonari. « Upper Bound for Cross-Lingual Concept Mapping with External Translation Resources ». Dans Natural Language Processing and Information Systems, 424–31. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19581-0_41.
Texte intégralFu, Bo, Rob Brennan et Declan O’Sullivan. « Cross-Lingual Ontology Mapping – An Investigation of the Impact of Machine Translation ». Dans The Semantic Web, 1–15. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-10871-6_1.
Texte intégralAmaral, Gabriel, Mārcis Pinnis, Inguna Skadiņa, Odinaldo Rodrigues et Elena Simperl. « Statistical and Neural Methods for Cross-lingual Entity Label Mapping in Knowledge Graphs ». Dans Text, Speech, and Dialogue, 39–51. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-16270-1_4.
Texte intégralBond, Francis, et Giulia Bonansinga. « Exploring Cross-Lingual Sense Mapping in a Multilingual Parallel Corpus ». Dans Proceedings of the Second Italian Conference on Computational Linguistics CLiC-it 2015, 56–61. Accademia University Press, 2015. http://dx.doi.org/10.4000/books.aaccademia.1321.
Texte intégralActes de conférences sur le sujet "Cross-Lingual Mapping"
Aldarmaki, Hanan, et Mona Diab. « Context-Aware Cross-Lingual Mapping ». Dans Proceedings of the 2019 Conference of the North. Stroudsburg, PA, USA : Association for Computational Linguistics, 2019. http://dx.doi.org/10.18653/v1/n19-1391.
Texte intégralIvanova, Tatyana. « Cross-lingual and multilingual ontology mapping - survey ». Dans CompSysTech'18 : 19th International Conference on Computer Systems and Technologies. New York, NY, USA : ACM, 2018. http://dx.doi.org/10.1145/3274005.3274034.
Texte intégralMoberg, Marko, Kimmo Parssinen et Juha Iso-Sipila. « Cross-lingual phoneme mapping for multilingual synthesis systems ». Dans Interspeech 2004. ISCA : ISCA, 2004. http://dx.doi.org/10.21437/interspeech.2004-364.
Texte intégralDo, Van Hai, Xiong Xiao, Eng Siong Chng et Haizhou Li. « Context dependant phone mapping for cross-lingual acoustic modeling ». Dans 2012 8th International Symposium on Chinese Spoken Language Processing (ISCSLP 2012). IEEE, 2012. http://dx.doi.org/10.1109/iscslp.2012.6423496.
Texte intégralPatel, Ami, David Li, Eunjoon Cho et Petar Aleksic. « Cross-Lingual Phoneme Mapping for Language Robust Contextual Speech Recognition ». Dans ICASSP 2018 - 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018. http://dx.doi.org/10.1109/icassp.2018.8461600.
Texte intégralShi, Xiaofei, et Yanghua Xiao. « Modeling Multi-mapping Relations for Precise Cross-lingual Entity Alignment ». Dans Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg, PA, USA : Association for Computational Linguistics, 2019. http://dx.doi.org/10.18653/v1/d19-1075.
Texte intégralCheng, Yi, et Sujian Li. « Zero-shot Chinese Discourse Dependency Parsing via Cross-lingual Mapping ». Dans Proceedings of the 1st Workshop on Discourse Structure in Neural NLG. Stroudsburg, PA, USA : Association for Computational Linguistics, 2019. http://dx.doi.org/10.18653/v1/w19-8104.
Texte intégralQian, Yao, Ji Xu et Frank K. Soong. « A frame mapping based HMM approach to cross-lingual voice transformation ». Dans ICASSP 2011 - 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2011. http://dx.doi.org/10.1109/icassp.2011.5947509.
Texte intégralOrmazabal, Aitor, Mikel Artetxe, Aitor Soroa, Gorka Labaka et Eneko Agirre. « Beyond Offline Mapping : Learning Cross-lingual Word Embeddings through Context Anchoring ». Dans Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1 : Long Papers). Stroudsburg, PA, USA : Association for Computational Linguistics, 2021. http://dx.doi.org/10.18653/v1/2021.acl-long.506.
Texte intégralSim, Khe Chai, et Haizhou Li. « Stream-based context-sensitive phone mapping for cross-lingual speech recognition ». Dans Interspeech 2009. ISCA : ISCA, 2009. http://dx.doi.org/10.21437/interspeech.2009-764.
Texte intégral