Articles de revues sur le sujet « Coupled thermoelasticity »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Coupled thermoelasticity.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Coupled thermoelasticity ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Eslami, M. R., et H. Vahedi. « Coupled thermoelasticity beam problems ». AIAA Journal 27, no 5 (mai 1989) : 662–65. http://dx.doi.org/10.2514/3.10161.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kumar, Roushan, et Ravi Kumar. « A study of thermoelastic damping in micromechanical resonators under unified generalized thermoelasticity formulation ». Noise & ; Vibration Worldwide 50, no 6 (juin 2019) : 169–75. http://dx.doi.org/10.1177/0957456519853814.

Texte intégral
Résumé :
In this article, a unified formulation for the generalized coupled thermoelasticity theories by employing an appropriate system of partial differential equations as the governing system is presented to investigate thermoelastic damping of a microbeam resonator. The generalized coupled thermoelasticity theories namely: the extended thermoelasticity proposed by Lord and Shulman, the thermoelasticity without energy dissipation (thermoelasticity type-II) and the thermoelasticity with energy dissipation (thermoelasticity type III) in a unified way by introducing the unified parameters. An explicit formula of thermoelastic damping has been derived in a unified way and numerical results for effects of the beam height, relaxation time parameter on thermoelastic damping of the microbeam resonator have been studied and compared.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Serpilli, Michele, Serge Dumont, Raffaella Rizzoni et Frédéric Lebon. « Interface Models in Coupled Thermoelasticity ». Technologies 9, no 1 (4 mars 2021) : 17. http://dx.doi.org/10.3390/technologies9010017.

Texte intégral
Résumé :
This work proposes new interface conditions between the layers of a three-dimensional composite structure in the framework of coupled thermoelasticity. More precisely, the mechanical behavior of two linear isotropic thermoelastic solids, bonded together by a thin layer, constituted of a linear isotropic thermoelastic material, is studied by means of an asymptotic analysis. After defining a small parameter ε, which tends to zero, associated with the thickness and constitutive coefficients of the intermediate layer, two different limit models and their associated limit problems, the so-called soft and hard thermoelastic interface models, are characterized. The asymptotic expansion method is reviewed by taking into account the effect of higher-order terms and defining a generalized thermoelastic interface law which comprises the above aforementioned models, as presented previously. A numerical example is presented to show the efficiency of the proposed methodology, based on a finite element approach developed previously.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Harmain, G. A., J. L. Wegner, J. Su et J. B. Haddow. « Coupled radially symmetric linear thermoelasticity ». Wave Motion 25, no 4 (juin 1997) : 385–400. http://dx.doi.org/10.1016/s0165-2125(96)00049-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Saxena, H. S., et R. S. Dhaliwal. « EIGENVALUE APPROACH TO COUPLED THERMOELASTICITY ». Journal of Thermal Stresses 13, no 2 (janvier 1990) : 161–75. http://dx.doi.org/10.1080/01495739008927030.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Carbonaro, Bruno, et Remigio Russo. « Uniqueness in linear coupled thermoelasticity ». Journal of Elasticity 17, no 1 (1987) : 85–91. http://dx.doi.org/10.1007/bf00042451.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kumar, Rajneesh, Aseem Miglani et Rekha Rani. « Eigenvalue formulation to micropolar porous thermoelastic circular plate using dual phase lag model ». Multidiscipline Modeling in Materials and Structures 13, no 2 (14 août 2017) : 347–62. http://dx.doi.org/10.1108/mmms-08-2016-0038.

Texte intégral
Résumé :
Purpose The purpose of this paper is to study the axisymmetric problem in a micropolar porous thermoelastic circular plate with dual phase lag model by employing eigenvalue approach subjected to thermomechanical sources. Design/methodology/approach The Laplace and Hankel transforms are employed to obtain the expressions for displacements, microrotation, volume fraction field, temperature distribution and stresses in the transformed domain. A numerical inversion technique has been carried out to obtain the resulting quantities in the physical domain. Effect of porosity and phase lag on the resulting quantities has been presented graphically. The results obtained for Lord Shulman theory (L-S, 1967) and coupled theory of thermoelasticity are presented as the particular cases. Findings The variation of temperature distribution is similar for micropolar thermoelastic with dual (MTD) phase lag model and coupled theory of thermoelasticity. The variation is also similar for tangential couple stress for MTD and L-S theory but opposite to couple theory. The behavior of volume fraction field and tangential couple stress for L-S theory and coupled theory are observed opposite. The values of all the resulting quantities are close to each other away from the sources. The variation in tangential stress, tangential couple stress and temperature distribution is more uniform. Originality/value The results are original and new because the authors presented an eigenvalue approach for two dimensional problem of micropolar porous thermoelastic circular plate with dual phase lag model. A comparison of porosity, L-S theory and coupled theory of micropolar thermoelasticity is made. Such problem has applications in material science, industries and earthquake problems.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Choudhuri, S. K. Roy, et Manidipa Banerjee (Chattopadhyay). « Magneto-viscoelastic plane waves in rotating media in the generalized thermoelasticity II ». International Journal of Mathematics and Mathematical Sciences 2005, no 11 (2005) : 1819–34. http://dx.doi.org/10.1155/ijmms.2005.1819.

Texte intégral
Résumé :
A study is made of the propagation of time-harmonic magneto-thermoviscoelastic plane waves in a homogeneous electrically conducting viscoelastic medium of Kelvin-Voigt type permeated by a primary uniform external magnetic field when the entire medium rotates with a uniform angular velocity. The generalized thermoelasticity theory of type II (Green and Naghdi model) is used to study the propagation of waves. A more general dispersion equation for coupled waves is derived to ascertain the effects of rotation, finite thermal wave speed of GN theory, viscoelastic parameters and the external magnetic field on the phase velocity, the attenuation coefficient, and the specific energy loss of the waves. Limiting cases for low and high frequencies are also studied. In absence of rotation, external magnetic field, and viscoelasticity, the general dispersion equation reduces to the dispersion equation for coupled thermal dilatational waves in generalized thermoelasticity II (GN model), not considered before. It reveals that the coupled thermal dilatational waves in generalized thermoelasticity II are unattenuated and nondispersive in contrast to the thermoelastic waves in classical coupled thermoelasticity (Chadwick (1960)) which suffer both attenuation and dispersion.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kovalev, V. A., Yu N. Radayev et D. A. Semenov. « Coupled Dynamic Problems of Hyperbolic Thermoelasticity ». Izvestiya of Saratov University. New Series. Series : Mathematics. Mechanics. Informatics 9, no 4(2) (2009) : 94–127. http://dx.doi.org/10.18500/1816-9791-2009-9-4-2-94-127.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Bakhshi, M., A. Bagri et M. R. Eslami. « Coupled Thermoelasticity of Functionally Graded Disk ». Mechanics of Advanced Materials and Structures 13, no 3 (juillet 2006) : 219–25. http://dx.doi.org/10.1080/15376490600582719.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Sistaninia, Me, Ma Sistaninia et H. Moeanodini. « Laser Surface Hardening Considering Coupled Thermoelasticity ». Journal of Mechanics 25, no 3 (septembre 2009) : 241–49. http://dx.doi.org/10.1017/s1727719100002690.

Texte intégral
Résumé :
AbstractThermoelastic temperature, displacement and stress in heat transfer during laser surface hardening are solved in both Lagrangian formulation and Eulerian formulation. In the Eulerian formulation, the heat flux is fixed in space and the work-piece is moved through a control volume. In the case of uniform velocity and uniform heat flux distribution, the Eulerian formulation leads to a steady-state problem, while the Lagrangian formulation remains transient. In the Eulerian formulation, the reduction to a steady-state problem increases the computational efficiency. Also, in this study, an analytical solution is developed for an uncoupled transient heat conduction equation in which a plane slab is heated by a laser beam. The thermal results of the numerical models are compared with the results of the analytical model. A comparison of the results shows that numerical solutions in the case of uncoupled problem are in good agreement with the analytical solution.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Carter, J. P., et J. R. Booker. « Finite element analysis of coupled thermoelasticity ». Computers & ; Structures 31, no 1 (janvier 1989) : 73–80. http://dx.doi.org/10.1016/0045-7949(89)90169-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Marotti de Sciarra, Francesco. « Some Variational Principles for Coupled Thermoelasticity ». Journal of Engineering 2013 (2013) : 1–8. http://dx.doi.org/10.1155/2013/516462.

Texte intégral
Résumé :
The nonlinear thermoelasticity of type II proposed by Green and Naghdi is considered. The thermoelastic structural model is formulated in a quasistatic range, and the related thermoelastic variational formulation in the complete set of state variables is recovered. Hence a consistent framework to derive all the variational formulations with different combinations of the state variables is provided, and a family of mixed variational formulations, with different combinations of state variables, is provided starting from the general variational formulation. A uniqueness condition is provided on the basis of a suitable variational formulation.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Awrejcewicz, Jan, et Vadim Krysko. « Coupled Thermoelasticity Problems of Shallow Shells ». Systems Analysis Modelling Simulation 43, no 3 (mars 2003) : 269–86. http://dx.doi.org/10.1080/0232929031000150238.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

D. V. Strunin, R. V. N. Melnik, A. « COUPLED THERMOMECHANICAL WAVES IN HYPERBOLIC THERMOELASTICITY ». Journal of Thermal Stresses 24, no 2 (février 2001) : 121–40. http://dx.doi.org/10.1080/01495730150500433.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Bagri, A., H. Taheri, M. R. Eslami et S. Fariborz. « Generalized Coupled Thermoelasticity of a Layer ». Journal of Thermal Stresses 29, no 4 (avril 2006) : 359–70. http://dx.doi.org/10.1080/01495730500360492.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Babaei, M. H., M. Abbasi et M. R. Eslami. « Coupled Thermoelasticity of Functionally Graded Beams ». Journal of Thermal Stresses 31, no 8 (10 juillet 2008) : 680–97. http://dx.doi.org/10.1080/01495730802193930.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Meriç, R. A. « COUPLED OPTIMIZATION IN STEADY-STATE THERMOELASTICITY ». Journal of Thermal Stresses 8, no 3 (janvier 1985) : 333–47. http://dx.doi.org/10.1080/01495738508942240.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Russo, Remigio. « Classical coupled thermoelasticity in unbounded domains ». Journal of Elasticity 22, no 1 (août 1989) : 1–24. http://dx.doi.org/10.1007/bf00055331.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Day, W. A. « Steady forced vibrations in coupled thermoelasticity ». Archive for Rational Mechanics and Analysis 93, no 4 (1986) : 323–34. http://dx.doi.org/10.1007/bf00280511.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Atkinson, C., et R. V. Craster. « Fracture in fully coupled dynamic thermoelasticity ». Journal of the Mechanics and Physics of Solids 40, no 7 (octobre 1992) : 1415–32. http://dx.doi.org/10.1016/0022-5096(92)90026-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Kačur, Jozef, et Alexander Ženíšek. « Analysis of approximate solutions of coupled dynamical thermoelasticity and related problems ». Applications of Mathematics 31, no 3 (1986) : 190–223. http://dx.doi.org/10.21136/am.1986.104199.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Singh, Baljeet. « Propagation of Plane Waves in a Thermally Conducting Mixture ». ISRN Applied Mathematics 2011 (16 août 2011) : 1–12. http://dx.doi.org/10.5402/2011/301816.

Texte intégral
Résumé :
The governing equations for generalized thermoelasticity of a mixture of an elastic solid and a Newtonian fluid are formulated in the context of Lord-Shulman and Green-Lindsay theories of generalized thermoelasticity. These equations are solved to show the existence of three coupled longitudinal waves and two coupled transverse waves, which are dispersive in nature. Reflection from a thermally insulated stress-free surface is considered for incidence of coupled longitudinal wave. The speeds and reflection coefficients of plane waves are computed numerically for a particular model.
Styles APA, Harvard, Vancouver, ISO, etc.
24

SARKAR, NANTU, et ABHIJIT LAHIRI. « EFFECT OF FRACTIONAL PARAMETER ON PLANE WAVES IN A ROTATING ELASTIC MEDIUM UNDER FRACTIONAL ORDER GENERALIZED THERMOELASTICITY ». International Journal of Applied Mechanics 04, no 03 (septembre 2012) : 1250030. http://dx.doi.org/10.1142/s1758825112500305.

Texte intégral
Résumé :
In ["Theory of fractional order generalized thermoelasticity," Journal of Heat Transfer132, 2010] Youssef has proposed a model in generalized thermoelasticity based on the fractional order time derivatives. The current manuscript is concerned with a two-dimensional generalized thermoelastic coupled problem for a homogeneous isotropic and thermally conducting thermoelastic rotating medium in the context of the above fractional order generalized thermoelasticity with two relaxation time parameters. The normal mode analysis technique is used to solve the resulting non-dimensional coupled governing equations of the problem. The resulting solution is then applied to two concrete problems. The effect of the fractional parameter and the time instant on the variations of different field quantities inside the elastic medium are analyzed graphically in the presence of rotation.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Marotti de Sciarra, F. « Mixed Variational Principles in Nondissipative Coupled Thermoelasticity ». Advances in Mechanical Engineering 6 (12 février 2015) : 684075. http://dx.doi.org/10.1155/2014/684075.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Bahtui, A., et M. R. Eslami. « Coupled thermoelasticity of functionally graded cylindrical shells ». Mechanics Research Communications 34, no 1 (janvier 2007) : 1–18. http://dx.doi.org/10.1016/j.mechrescom.2005.09.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Askar Altay, G., et M. Cengiz Dökmecí. « Some variational principles for linear coupled thermoelasticity ». International Journal of Solids and Structures 33, no 26 (novembre 1996) : 3937–48. http://dx.doi.org/10.1016/0020-7683(95)00215-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Wilms, E. V., et H. Cohen. « Some one-dimensional problems in coupled thermoelasticity ». Mechanics Research Communications 12, no 1 (janvier 1985) : 41–47. http://dx.doi.org/10.1016/0093-6413(85)90033-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Podstrigach, Ya S., et Yu A. Chernukha. « The coupled thermoelasticity problem for thin plates ». Journal of Soviet Mathematics 62, no 1 (octobre 1992) : 2489–93. http://dx.doi.org/10.1007/bf01099137.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Parnell, William J. « Coupled Thermoelasticity in a Composite Half-Space ». Journal of Engineering Mathematics 56, no 1 (2 mai 2006) : 1–21. http://dx.doi.org/10.1007/s10665-006-9038-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Kobzar’, V. N., et L. A. Fil'shtinskii. « The plane dynamic problem of coupled thermoelasticity ». Journal of Applied Mathematics and Mechanics 72, no 5 (janvier 2008) : 611–18. http://dx.doi.org/10.1016/j.jappmathmech.2008.11.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

AKBARZADEH, A. H., M. H. BABAEI et Z. T. CHEN. « THERMOPIEZOELECTRIC ANALYSIS OF A FUNCTIONALLY GRADED PIEZOELECTRIC MEDIUM ». International Journal of Applied Mechanics 03, no 01 (mars 2011) : 47–68. http://dx.doi.org/10.1142/s1758825111000865.

Texte intégral
Résumé :
The thermopiezoelectrical behavior of a functionally graded piezoelectric medium (FGPM) is investigated in the present work. For the special case, the dynamic response of an FGPM rod excited by a moving heat source is studied. The material properties of the FGPM rod are assumed to vary exponentially through the length, except for specific heat and thermal relaxation time which are held constant for simplicity. The governing differential equations in terms of displacement, temperature, and electric potential are obtained in a general form that includes coupled and uncoupled thermoelasticity. The coupled formulation considers classical thermoelasticity as well as generalized thermoelasticity. Employing the Laplace transform and successive decoupling method, unknowns are given in the Laplace domain. Employing a numerical Laplace inversion method, the solutions are gained in the time domain. Numerical examples for the transient response of the FGPM rod are displayed to clarify the differences among the results of the generalized, coupled, and uncoupled theories for various nonhomogeneity indices. The results are verified with those reported in the literature.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Eslami, M., et H. Vahedi. « Galerkin Finite Element Displacement Formulation of Coupled Thermoelasticity Spherical Problems ». Journal of Pressure Vessel Technology 114, no 3 (1 août 1992) : 380–84. http://dx.doi.org/10.1115/1.2929057.

Texte intégral
Résumé :
When the time rate of change of the thermomechanical forces in a continuum is high enough to produce stress wave, the solution must be sought through the simultaneous consideration of the first law of thermodynamics and the equations of thermoelasticity. The general finite element formulation of coupled thermoelasticity along with a general discussion for inclusion of mechanical and thermal boundary conditions is presented. The case is then considered for a spherical symmetry and the governing coupled thermoelastic equations are reduced for a thick sphere. Based on the Galerkin method, a Kantrovich approximation is applied to the displacement and temperature field and the finite element formulation of the problem is obtained.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Gupta, R. R. « Wave Propagation in a Micropolar Transversely Isotropic Generalized Thermoelastic Half-Space ». International Journal of Applied Mechanics and Engineering 19, no 2 (1 mai 2014) : 247–57. http://dx.doi.org/10.2478/ijame-2014-0016.

Texte intégral
Résumé :
Abstract Rayleigh waves in a half-space exhibiting microplar transversely isotropic generalized thermoelastic properties based on the Lord-Shulman (L-S), Green and Lindsay (G-L) and Coupled thermoelasticty (C-T) theories are discussed. The phase velocity and attenuation coefficient in the previous three different theories have been obtained. A comparison is carried out of the phase velocity, attenuation coefficient and specific loss as calculated from the different theories of generalized thermoelasticity along with the comparison of anisotropy. The amplitudes of displacements, microrotation, stresses and temperature distribution were also obtained. The results obtained and the conclusions drawn are discussed numerically and illustrated graphically. Relevant results of previous investigations are deduced as special cases.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Pan, Ying, Zi Hou Zhang et Li Hou Liu. « Effect of Rotation to a Half-Sapce in Magneto-Thermoelasticity with Thermal Relaxations ». Key Engineering Materials 353-358 (septembre 2007) : 3018–21. http://dx.doi.org/10.4028/www.scientific.net/kem.353-358.3018.

Texte intégral
Résumé :
Based on Green and Lindsay’s generalized thermoelasticity theory with two relaxation times, a two-dimensional coupled problem in electromagneto-thermoelasticity for a rotating half-space solid whose surface is subjected to a heat is studied in this paper. The normal mode analysis is used to obtain the analytical expressions for the considered variables. It can be found electromagneto-thermoelastic coupled effect in the medium, and it also can be found that rotation acts to significantly decrease the magnitude of the real part of displacement and stress and insignificantly affect the magnitude of temperature and induced magnetic field.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Singh, B., et S. Verma. « On Propagation of Rayleigh Type Surface Wave in Five Different Theories of Thermoelasticity ». International Journal of Applied Mechanics and Engineering 24, no 3 (1 août 2019) : 661–73. http://dx.doi.org/10.2478/ijame-2019-0041.

Texte intégral
Résumé :
Abstract The governing equations for a homogeneous and isotropic thermoelastic medium are formulated in the context of coupled thermoelasticity, Lord and Shulman theory of generalized thermoelasticity with one relaxation time, Green and Lindsay theory of generalized thermoelasticity with two relaxation times, Green and Nagdhi theory of thermoelasticity without energy dissipation and Chandrasekharaiah and Tzou theory of thermoelasticity. These governing equations are solved to obtain general surface wave solutions. The particular solutions in a half-space are obtained with the help of appropriate radiation conditions. The two types of boundaries at athe surface of a half-space are considered namely, the stress free thermally insulated boundary and stress free isothermal boundary. The particular solutions obtained in a half-space satisfy the relevant boundary conditions at the free surface of the half-space and a frequency equation for the Rayleigh wave speed is obtained for both thermally insulated and isothermal cases. The non-dimensional Rayleigh wave speed is computed for aluminium metal to observe the effects of frequency, thermal relaxation time and different theories of thermoelasticity.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Biswas, Siddhartha. « Modeling of memory-dependent derivatives with the state-space approach ». Multidiscipline Modeling in Materials and Structures 16, no 4 (13 décembre 2019) : 657–77. http://dx.doi.org/10.1108/mmms-06-2019-0120.

Texte intégral
Résumé :
Purpose The purpose of this paper is to deal with a new generalized model of thermoelasticity theory with memory-dependent derivatives (MDD). Design/methodology/approach The two-dimensional equations of generalized thermoelasticity with MDD are solved using a state-space approach. The numerical inversion method is employed for the inversion of Laplace and Fourier transforms. Findings The solutions are presented graphically for different values of time delay and kernel function. Originality/value The governing coupled equations of the new generalized thermoelasticity with time delay and kernel function, which can be chosen freely according to the necessity of applications, are applied to a two-dimensional problem of an isotropic plate.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Kalandarov, Aziz A. « Numerical Modeling of Partially Coupled Problems of Thermoelasticity ». International Journal of Advanced Trends in Computer Science and Engineering 9, no 3 (25 juin 2020) : 3095–99. http://dx.doi.org/10.30534/ijatcse/2020/92932020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Agalovyan, L. A., R. S. Gevorgyan et A. G. Sargsyan. « Comparative asymptotic analysis of coupled and uncoupled thermoelasticity ». Mechanics of Solids 49, no 4 (juillet 2014) : 389–402. http://dx.doi.org/10.3103/s0025654414040049.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Day, W. A. « Initial sensitivity to the boundary in coupled thermoelasticity ». Archive for Rational Mechanics and Analysis 87, no 3 (septembre 1985) : 253–66. http://dx.doi.org/10.1007/bf00250726.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Tosaka, N., et I. G. Suh. « Boundary element analysis of dynamic coupled thermoelasticity problems ». Computational Mechanics 8, no 5 (1991) : 331–42. http://dx.doi.org/10.1007/bf00369891.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Eslami, M. R., M. Shakeri et R. Sedaghati. « COUPLED THERMOELASTICITY OF AN AXIALLY SYMMETRIC CYLINDRICAL SHELL ». Journal of Thermal Stresses 17, no 1 (janvier 1994) : 115–35. http://dx.doi.org/10.1080/01495739408946250.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Speziale, C. G. « On the coupled heat equation of linear thermoelasticity ». Acta Mechanica 150, no 1-2 (mars 2001) : 121–26. http://dx.doi.org/10.1007/bf01178549.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Wilms, E. V. « Coupled thermoelasticity with non-zero thermal boundary conditions ». Mechanics Research Communications 20, no 5 (septembre 1993) : 431–36. http://dx.doi.org/10.1016/0093-6413(93)90035-m.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

K�gl, M., et L. Gaul. « A boundary element method for anisotropic coupled thermoelasticity ». Archive of Applied Mechanics (Ingenieur Archiv) 73, no 5-6 (1 novembre 2003) : 377–98. http://dx.doi.org/10.1007/s00419-003-0289-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Bahtui, A., et M. R. Eslami. « Generalized coupled thermoelasticity of functionally graded cylindrical shells ». International Journal for Numerical Methods in Engineering 69, no 4 (2006) : 676–97. http://dx.doi.org/10.1002/nme.1782.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Liu, W. K., et H. G. Chang. « A Note on Numerical Analysis of Dynamic Coupled Thermoelasticity ». Journal of Applied Mechanics 52, no 2 (1 juin 1985) : 483–85. http://dx.doi.org/10.1115/1.3169075.

Texte intégral
Résumé :
A method of computation for dynamic coupled thermoelasticity is developed. This approach has the advantage of applying an implicit algorithm to the elasticity equation and an unconditionally stable explicit algorithm to the heat conduction equation. As a result, the coupled matrix equations are “symmetric” and “profiled.” In addition, unconditional stability is sought.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Zenkour, Ashraf M., Daoud S. Mashat et Ashraf M. Allehaibi. « Thermoelastic Coupling Response of an Unbounded Solid with a Cylindrical Cavity Due to a Moving Heat Source ». Mathematics 10, no 1 (21 décembre 2021) : 9. http://dx.doi.org/10.3390/math10010009.

Texte intégral
Résumé :
The current article introduces the thermoelastic coupled response of an unbounded solid with a cylindrical hole under a traveling heat source and harmonically altering heat. A refined dual-phase-lag thermoelasticity theory is used for this purpose. A generalized thermoelastic coupled solution is developed by using Laplace’s transforms technique. Field quantities are graphically displayed and discussed to illustrate the effects of heat source, phase-lag parameters, and the angular frequency of thermal vibration on the field quantities. Some comparisons are made with and without the inclusion of a moving heat source. The outcomes described here using the refined dual-phase-lag thermoelasticity theory are the most accurate and are provided as benchmarks for other researchers.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Abbas, Ibrahim A. « The Effect of Relaxation Times on Thermoelastic Damping in a Nanobeam Resonator ». Journal of Molecular and Engineering Materials 04, no 02 (juin 2016) : 1650001. http://dx.doi.org/10.1142/s2251237316500015.

Texte intégral
Résumé :
In the present work, in accordance with the generalized theory of thermoelasticity with two thermal relaxation times, the vibration of a thick finite nanobeam resonator has been considered. Both the general thermoelasticity and coupled thermoelasticity (CT) theories with only one relaxation time can be deduced from the present model as special cases. Under clamped conditions for beam, the effect of relaxation times in nanobeam resonator has been investigated. Based on the analytical relationships, the beam deflection, temperature change, frequency shift and thermoelastic damping were investigated and the numerical results were graphically obtained. According to the observed results there is a clear difference between the CT theory, Lord and Shulman’s (LS) theory and Green and Lindsay’s (GL) theory.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Zenkour, Ashraf M. « Generalized Thermoelasticity Theories for Axisymmetric Hollow Cylinders Under Thermal Shock with Variable Thermal Conductivity ». Journal of Molecular and Engineering Materials 06, no 03n04 (septembre 2018) : 1850006. http://dx.doi.org/10.1142/s2251237318500065.

Texte intégral
Résumé :
The thermoelastic problem of clamped axisymmetric infinite hollow cylinders under thermal shock with variable thermal conductivity is presented. The outer surface of infinite hollow cylinder is considered to be thermally insulated while inner surface is subjected to an initial heating source. In addition, the cylinder is considered to be clamped at its inner and outer radii. Generalized thermoelasticity theories are used to deal with the field quantities. All generalized thermoelasticity theories such as Green and Lindsay, Lord and Shulman, and coupled thermoelasticity (CTE) are considered as special cases of the present theory. Effects of variable thermal conductivity and time parameters on radial displacement, temperature, and stresses of the hollow cylinders are investigated.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie