Sommaire
Littérature scientifique sur le sujet « Core-hole-clock »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Core-hole-clock ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Core-hole-clock"
Feulner, P., F. Blobner, J. Bauer, R. Han, A. Kim, T. Sundermann, N. Müller, U. Heinzmann et W. Wurth. « Ways to Spin Resolved Core-Hole-Clock Measurements ». e-Journal of Surface Science and Nanotechnology 13 (2015) : 317–23. http://dx.doi.org/10.1380/ejssnt.2015.317.
Texte intégralGarcia-Basabe, Yunier, Denis Ceolin, Aldo J. G. Zarbin, Lucimara S. Roman et Maria Luiza M. Rocco. « Ultrafast interface charge transfer dynamics on P3HT/MWCNT nanocomposites probed by resonant Auger spectroscopy ». RSC Advances 8, no 46 (2018) : 26416–22. http://dx.doi.org/10.1039/c8ra04629h.
Texte intégralPiancastelli, Maria Novella, Gildas Goldsztejn, Tatiana Marchenko, Renaud Guillemin, Rajesh K. Kushawaha, Loïc Journel, Stéphane Carniato, Jean-Pascal Rueff, Denis Céolin et Marc Simon. « Core-hole-clock spectroscopies in the tender x-ray domain ». Journal of Physics B : Atomic, Molecular and Optical Physics 47, no 12 (10 juin 2014) : 124031. http://dx.doi.org/10.1088/0953-4075/47/12/124031.
Texte intégralOropeza, Freddy E., Mariam Barawi, Elena Alfonso-González, Victor A. de la Peña O’Shea, Juan F. Trigo, Cecilia Guillén, Fernan Saiz et Ignacio J. Villar-Garcia. « Understanding ultrafast charge transfer processes in SnS and SnS2 : using the core hole clock method to measure attosecond orbital-dependent electron delocalisation in semiconducting layered materials ». Journal of Materials Chemistry C 9, no 35 (2021) : 11859–72. http://dx.doi.org/10.1039/d1tc02866a.
Texte intégralWang, Li, Wei Chen et Andrew Thye Shen Wee. « Charge transfer across the molecule/metal interface using the core hole clock technique ». Surface Science Reports 63, no 11 (novembre 2008) : 465–86. http://dx.doi.org/10.1016/j.surfrep.2008.06.001.
Texte intégralZharnikov, Michael. « Probing charge transfer dynamics in self-assembled monolayers by core hole clock approach ». Journal of Electron Spectroscopy and Related Phenomena 200 (avril 2015) : 160–73. http://dx.doi.org/10.1016/j.elspec.2015.05.022.
Texte intégralSundermann, T., N. Müller, U. Heinzmann, W. Wurth, J. Bauer, R. Han, A. Kim, D. Menzel et P. Feulner. « A universal approach to spin selective core-hole-clock measurement demonstrated for Ar/Co(0001) ». Surface Science 643 (janvier 2016) : 190–96. http://dx.doi.org/10.1016/j.susc.2015.08.031.
Texte intégralBorges, B. G. A. L., L. S. Roman et M. L. M. Rocco. « Femtosecond and Attosecond Electron Transfer Dynamics of Semiconductors Probed by the Core-Hole Clock Spectroscopy ». Topics in Catalysis 62, no 12-16 (5 juillet 2019) : 1004–10. http://dx.doi.org/10.1007/s11244-019-01189-8.
Texte intégralCao, Liang, Xing-Yu Gao, Andrew T. S. Wee et Dong-Chen Qi. « Quantitative Femtosecond Charge Transfer Dynamics at Organic/Electrode Interfaces Studied by Core-Hole Clock Spectroscopy ». Advanced Materials 26, no 46 (1 avril 2014) : 7880–88. http://dx.doi.org/10.1002/adma.201305414.
Texte intégralLi, Siqi, Taran Driver, Philipp Rosenberger, Elio G. Champenois, Joseph Duris, Andre Al-Haddad, Vitali Averbukh et al. « Attosecond coherent electron motion in Auger-Meitner decay ». Science 375, no 6578 (21 janvier 2022) : 285–90. http://dx.doi.org/10.1126/science.abj2096.
Texte intégralThèses sur le sujet "Core-hole-clock"
RAVIKUMAR, ABHILASH. « Electronic, spin dependent conductive properties of modified graphene ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2017. http://hdl.handle.net/10281/170813.
Texte intégralThe first part of research we present is the adsorption of core-excited organic molecules on graphene. We predict the induction or suppression of magnetism in the valence shell of physisorbed and chemisorbed organic molecules on graphene occurring on the femtosecond time scale as a result of core level excitations. We consider three organic molecules: Pyridine - whose interaction with graphene is mainly facilitated by van der Waals forces, Picoline radical - an intermediate case where there is a strong van der Waals interaction of the pyridine π ring with graphene but a covalent bonding of the molecule and pyri-dine radical - where the interaction is mainly by covalent bonding, and study the ground state and N 1s core excited state electronic properties for these systems. For physisorbed molecules, where the interaction with graphene is dominated by van der Waals forces and the system is non-magnetic in the ground state, numeri- cal simulations based on density functional theory show that the valence electrons relax towards a spin polarized configuration upon excitation of a core-level electron. The magnetism depends on efficient electron transfer from graphene on the femtosecond time scale. On the other hand, when graphene is covalently functionalized, the system is magnetic in the ground state showing two spin dependent midgap states localized around the adsorption site. At variance with the physisorbed case upon core-level excitation, the LUMO of the molecule and the mid gap states of graphene hybridize and the relaxed valence shell is not magnetic anymore. Next we discuss the interplay between the charge transfer lifetime of core excited organic molecules adsorbed on graphene and the modification of its electronic structure by a variable coupling with a metal substrate. Nitrogen 1s core electron of 1,10- bipyridine (C5H4N)2 is photoexcited and adsorbed on bilayer graphene/nickel(111) (BP/BLG/Ni) and epitaxially grown graphene/Ni(111) (BP/EG/ Ni). We predict from first principle calculations that the charge transfer time of core excited molecules depend strongly on the coupling of graphene to the underlying Ni substrate. In the ground state, the LUMO of the molecule is quite strongly coupled with the substrate in both the cases (BP/BLG/Ni and BP/EG/Ni). In the case of BP/BLG/Ni, the layer of graphene in contact with nickel substrate strongly hybridizes but the upper layer of graphene remains fairly decoupled. The excited molecular LUMO* finds very few states of graphene close to the Dirac point at the Fermi level to hybridize with. This leads to a decoupled molecular LUMO* and the lifetime increases significantly (∼ 116 fs). But in the case of BP/EG/Ni, the strong hybridization of graphene with the underlying nickel substrate significantly distorts the electronic structure of graphene generating states close to the Fermi level. The LUMO* of the molecule strongly couples with these states resulting in a substantially smaller lifetime (∼ 33 fs). We also find experimental evidence to confirm this trend by performing core-hole-clock spectroscopy. The resonant charge transfer lifetime we find is ∼ 30 fs±5 fs for the BP/BLG/Ni and ∼ 4 fs±1 fs for the BP/EG/Ni, thus clearly demonstrating the effect of substrate on the charge transfer dynamics of organic molecules on graphene.
Pokapanich, Wandared. « Solvent–Solute Interaction : Studied by Synchrotron Radiation Based Photo and Auger Electron Spectroscopies ». Doctoral thesis, Uppsala universitet, Yt- och gränsskiktsvetenskap, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-138749.
Texte intégralFelaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 726
Sethuraman, Vijayalakshmi [Verfasser]. « Core-hole-clock spectroscopy : characterization of the method and dynamics of charge transfer at adsorbate metal interfaces / vorgelegt von Vijayalakshmi Sethuraman ». 2007. http://d-nb.info/984866744/34.
Texte intégralChapitres de livres sur le sujet "Core-hole-clock"
Cao, Liang, Xing-Yu Gao, Andrew T. S. Wee et Dong-Chen Qi. « Quantitative Femtosecond Charge Transfer Dynamics at Organic/Electrode Interfaces Studied by Core-Hole Clock Spectroscopy ». Dans Synchrotron Radiation in Materials Science, 137–78. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527697106.ch5.
Texte intégral