Littérature scientifique sur le sujet « Coproheme Decarboxylase »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Coproheme Decarboxylase ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Coproheme Decarboxylase"

1

Zhang, Ying, Junkai Wang, Chang Yuan, Wei Liu, Hongwei Tan, Xichen Li et Guangju Chen. « Ruffling drives coproheme decarboxylation by facilitating PCET : a theoretical investigation of ChdC ». Physical Chemistry Chemical Physics 22, no 28 (2020) : 16117–24. http://dx.doi.org/10.1039/d0cp02690e.

Texte intégral
Résumé :
Coproheme decarboxylase (ChdC) is an essential enzyme in the coproporphyrin-dependent heme synthesis pathway, which catalyzes oxidative decarboxylation of coproheme at the positions p2 and p4 to generate heme b under the action of hydrogen peroxide.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Liu, Wei, Yunjie Pang, Yutian Song, Xichen Li, Hongwei Tan et Guangju Chen. « Reorienting Mechanism of Harderoheme in Coproheme Decarboxylase—A Computational Study ». International Journal of Molecular Sciences 23, no 5 (25 février 2022) : 2564. http://dx.doi.org/10.3390/ijms23052564.

Texte intégral
Résumé :
Coproheme decarboxylase (ChdC) is an important enzyme in the coproporphyrin-dependent pathway (CPD) of Gram-positive bacteria that decarboxylates coproheme on two propionates at position 2 and position 4 sequentially to generate heme b by using H2O2 as an oxidant. This work focused on the ChdC from Geobacillus stearothermophilus (GsChdC) to elucidate the mechanism of its sequential two-step decarboxylation of coproheme. The models of GsChdC in a complex with substrate and reaction intermediate were built to investigate the reorienting mechanism of harderoheme. Targeted molecular dynamics simulations on these models validated that harderoheme is able to rotate in the active site of GsChdC with a 19.06-kcal·mol−1 energy barrier after the first step of decarboxylation to bring the propionate at position 4 in proximity of Tyr145 to continue the second decarboxylation step. The harderoheme rotation mechanism is confirmed to be much easier than the release–rebinding mechanism. In the active site of GsChdC, Trp157 and Trp198 comprise a “gate” construction to regulate the clockwise rotation of the harderoheme. Lys149 plays a critical role in the rotation mechanism, which not only keeps the Trp157–Trp198 “gate” from being closed but also guides the propionate at position 4 through the gap between Trp157 and Trp198 through a salt bridge interaction.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Sebastiani, Federico, Chiara Baroni, Gaurav Patil, Andrea Dali, Maurizio Becucci, Stefan Hofbauer et Giulietta Smulevich. « The Role of the Hydrogen Bond Network in Maintaining Heme Pocket Stability and Protein Function Specificity of C. diphtheriae Coproheme Decarboxylase ». Biomolecules 13, no 2 (25 janvier 2023) : 235. http://dx.doi.org/10.3390/biom13020235.

Texte intégral
Résumé :
Monoderm bacteria accumulate heme b via the coproporphyrin-dependent biosynthesis pathway. In the final step, in the presence of two molecules of H2O2, the propionate groups of coproheme at positions 2 and 4 are decarboxylated to form vinyl groups by coproheme decarboxylase (ChdC), in a stepwise process. Decarboxylation of propionate 2 produces an intermediate that rotates by 90° inside the protein pocket, bringing propionate 4 near the catalytic tyrosine, to allow the second decarboxylation step. The active site of ChdCs is stabilized by an extensive H-bond network involving water molecules, specific amino acid residues, and the propionate groups of the porphyrin. To evaluate the role of these H-bonds in the pocket stability and enzyme functionality, we characterized, via resonance Raman and electronic absorption spectroscopies, single and double mutants of the actinobacterial pathogen Corynebacterium diphtheriae ChdC complexed with coproheme and heme b. The selective elimination of the H-bond interactions between propionates 2, 4, 6, and 7 and the polar residues of the pocket allowed us to establish the role of each H-bond in the catalytic reaction and to follow the changes in the interactions from the substrate to the product.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Milazzo, Lisa, Thomas Gabler, Vera Pfanzagl, Hanna Michlits, Paul G. Furtmüller, Christian Obinger, Stefan Hofbauer et Giulietta Smulevich. « The hydrogen bonding network of coproheme in coproheme decarboxylase from Listeria monocytogenes : Effect on structure and catalysis ». Journal of Inorganic Biochemistry 195 (juin 2019) : 61–70. http://dx.doi.org/10.1016/j.jinorgbio.2019.03.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Milazzo, Lisa, Stefan Hofbauer, Barry D. Howes, Thomas Gabler, Paul G. Furtmüller, Christian Obinger et Giulietta Smulevich. « Insights into the Active Site of Coproheme Decarboxylase from Listeria monocytogenes ». Biochemistry 57, no 13 (14 mars 2018) : 2044–57. http://dx.doi.org/10.1021/acs.biochem.8b00186.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Streit, Bennett R., Arianna I. Celis, Krista Shisler, Kenton R. Rodgers, Gudrun S. Lukat-Rodgers et Jennifer L. DuBois. « Reactions of Ferrous Coproheme Decarboxylase (HemQ) with O2 and H2O2 Yield Ferric Heme b ». Biochemistry 56, no 1 (16 décembre 2016) : 189–201. http://dx.doi.org/10.1021/acs.biochem.6b00958.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Sebastiani, Federico, Riccardo Risorti, Chiara Niccoli, Hanna Michlits, Maurizio Becucci, Stefan Hofbauer et Giulietta Smulevich. « An active site at work – the role of key residues in C. diphteriae coproheme decarboxylase ». Journal of Inorganic Biochemistry 229 (avril 2022) : 111718. http://dx.doi.org/10.1016/j.jinorgbio.2022.111718.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Celis, Arianna I., George H. Gauss, Bennett R. Streit, Krista Shisler, Garrett C. Moraski, Kenton R. Rodgers, Gudrun S. Lukat-Rodgers, John W. Peters et Jennifer L. DuBois. « Structure-Based Mechanism for Oxidative Decarboxylation Reactions Mediated by Amino Acids and Heme Propionates in Coproheme Decarboxylase (HemQ) ». Journal of the American Chemical Society 139, no 5 (27 janvier 2017) : 1900–1911. http://dx.doi.org/10.1021/jacs.6b11324.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Tian, Ge, Gangping Hao, Xiaohua Chen et Yongjun Liu. « Tyrosyl Radical-Mediated Sequential Oxidative Decarboxylation of Coproporphyrinogen III through PCET : Theoretical Insights into the Mechanism of Coproheme Decarboxylase ChdC ». Inorganic Chemistry 60, no 17 (12 août 2021) : 13539–49. http://dx.doi.org/10.1021/acs.inorgchem.1c01864.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Pfanzagl, Vera, Laurenz Holcik, Daniel Maresch, Giulia Gorgone, Hanna Michlits, Paul G. Furtmüller et Stefan Hofbauer. « Coproheme decarboxylases - Phylogenetic prediction versus biochemical experiments ». Archives of Biochemistry and Biophysics 640 (février 2018) : 27–36. http://dx.doi.org/10.1016/j.abb.2018.01.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Coproheme Decarboxylase"

1

Milazzo, Lisa. « How resonance Raman spectroscopy can give valuable insights into diverse aspects of heme protein structure and function ». Doctoral thesis, 2019. http://hdl.handle.net/2158/1154362.

Texte intégral
Résumé :
Resonance Raman (RR) spectroscopy complemented by UV-Vis absorption spectroscopy is a very powerful technique to investigate the structure-function relationships of heme proteins, a widely distributed and biological relevant class of proteins which can play different biological functions. Since the protein activity is tightly linked to the structure of the heme active site, my study has been devoted to the investigation of several heme proteins involved in important biological processes, to obtain a comprehensive spectroscopic signature, with the aim to highlight the relationship between the heme pocket architecture and the protein function. The studies were carried out on native proteins and selected site-directed mutants, at both room (298 K) and low (80 K) temperature, at various pH, and in presence of various exogenous ligands, spanning the excitation wavelengths from UV to the visible region.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie