Littérature scientifique sur le sujet « Coordination Chemistry - Non-Transition Metals »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Coordination Chemistry - Non-Transition Metals ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Coordination Chemistry - Non-Transition Metals"

1

Salzer, A. « Nomenclature of Organometallic Compounds of the Transition Elements (IUPAC Recommendations 1999) ». Pure and Applied Chemistry 71, no 8 (30 août 1999) : 1557–85. http://dx.doi.org/10.1351/pac199971081557.

Texte intégral
Résumé :
Organometallic compounds are defined as containing at least one metal-carbon bond between an organic molecule, ion, or radical and a metal. Organometallic nomenclature therefore usually combines the nomenclature of organic chemisty and that of coordination chemistry. Provisional rules outlining nomenclature for such compounds are found both in Nomenclature of Organic Chemistry, 1979 and in Nomenclature of Inorganic Chemistry, 1990This document describes the nomenclature for organometallic compounds of the transition elements, that is compounds with metal-carbon single bonds, metal-carbon multiple bonds as well as complexes with unsaturated molecules (metal-p-complexes).Organometallic compounds are considered to be produced by addition reactions and so they are named on an addition principle. The name therefore is built around the central metal atom name. Organic ligand names are derived according to the rules of organic chemistry with appropriate endings to indicate the different bonding modes. To designate the points of attachment of ligands in more complicated structures, the h, k, and m-notations are used. The final section deals with the abbreviated nomenclature for metallocenes and their derivatives.ContentsIntroduction Systems of Nomenclature2.1 Binary type nomenclature 2.2 Substitutive nomenlcature 2.3 Coordination nomenclature Coordination Nomenclature3.1 General definitions of coordination chemistry 3.2 Oxidation numbers and net charges 3.3 Formulae and names for coordination compounds Nomenclature for Organometallic Compounds of Transition Metals 4.1 Valence-electron-numbers and the 18-valence-electron-rule 4.2 Ligand names 4.2.1 Ligands coordinating by one metal-carbon single bond 4.2.2 Ligands coordinating by several metal-carbon single bonds 4.2.3 Ligands coordinating by metal-carbon multiple bonds 4.2.4 Complexes with unsaturated molecules or groups 4.3 Metallocene nomenclature
Styles APA, Harvard, Vancouver, ISO, etc.
2

Baumgartner, Judith, et Christoph Marschner. « Coordination of non-stabilized germylenes, stannylenes, and plumbylenes to transition metals ». Reviews in Inorganic Chemistry 34, no 2 (1 juin 2014) : 119–52. http://dx.doi.org/10.1515/revic-2013-0014.

Texte intégral
Résumé :
AbstractComplexes of transition metals with heavy analogs of carbenes (tetrylenes) as ligands have been studied now for some 40 years. The current review attempts to provide an overview about complexes with non-stabilized (having no π-donating substituents) germylenes, stannylenes, and plumbylenes. Complexes are known for groups 4–11. For groups 6–10 not only examples of monodentate tetrylene ligands, but also of bridging ones are known. While this review covers almost 200 complexes, the field in general has been approached only very selectively and real attempts for systematic studies are very scarce. Although some isolated reports exist which deal with the reactivity of the tetrylene complexes most of the so far published work concentrates on synthesis and characterization.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Gallen, Albert, Sílvia Orgué, Guillermo Muller, Eduardo C. Escudero-Adán, Antoni Riera, Xavier Verdaguer et Arnald Grabulosa. « Synthesis and coordination chemistry of enantiopure t-BuMeP(O)H ». Dalton Transactions 47, no 15 (2018) : 5366–79. http://dx.doi.org/10.1039/c8dt00897c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kubas, Gregory J. « Molecular Hydrogen Coordination to Transition Metals ». Comments on Inorganic Chemistry 7, no 1 (mai 1988) : 17–40. http://dx.doi.org/10.1080/02603598808072297.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Bobrov, Sergey V., Andrey A. Karasik et Oleg G. Sinyashin. « Heterocyclic Phosphorus Ligands in Coordination Chemistry of Transition Metals ». Phosphorus, Sulfur, and Silicon and the Related Elements 144, no 1 (1 janvier 1999) : 289–92. http://dx.doi.org/10.1080/10426509908546238.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Fischer, Roland A., et Jurij Weiß. « Coordination Chemistry of Aluminum, Gallium, and Indium at Transition Metals ». Angewandte Chemie International Edition 38, no 19 (4 octobre 1999) : 2830–50. http://dx.doi.org/10.1002/(sici)1521-3773(19991004)38:19<2830 ::aid-anie2830>3.0.co;2-e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Leznoff, Daniel. « Phthalocyanines with Non-Traditional Early Transition-Metals ». ECS Meeting Abstracts MA2022-01, no 14 (7 juillet 2022) : 950. http://dx.doi.org/10.1149/ma2022-0114950mtgabs.

Texte intégral
Résumé :
The synthesis, spectroscopic and redox properties of new metallophthalocyanines (PcM) are active areas of research. The rings of PcM complexes can be successively reduced using chemical, electrochemical, or photochemical methods to give rise to species containing ring-reduced Pc(3-), Pc(4-) or Pc(5-) ligands ; in the other direction, both ring-oxidized Pc(-1) and Pc(0)-containing systems can be accessed. These species are usually generated and characterized in situ and have only recently begun to be isolated and structurally characterized. In particular, there are few examples of phthalocyanines with early-transition and f-block metals - despite the rich organometallic-type reactivity of these metals - and thus we targeted new PcM complexes in this underdeveloped area of the periodic table. Given their larger ionic size, the unusual structural feature of the metal centre protruding far out of the Pc cavity is observed. Hence, the exposure of the coordination sphere of these Lewis-acidic (often d0) metals makes these PcM complexes attractive catalysts; this cis-oriented axial ligation also drastically improves the solubility, despite the Pc-ring remaining unsubstituted. In this presentation the isolation and structural characterization of new PcM materials with M = scandium, zirconium, niobium and (time-permitting) molybdenum will be described, along with rare structurally characterized examples of their reduced Pc(4-) and Pc(3-)complexes. Their electronic structure and electrochemical behaviour will be discussed using a combination of spectroscopic and structural techniques. A series of moisture-sensitive, soluble PcZr(IV) and PcNb(V) alkoxides were prepared, characterized, and their catalytic activity towards the ring-opening polymerization of rac-lactide was studied and will be detailed. Reaction of PcScCl with LiO i Pr and NaO t Bu yielded two hydroxide complexes containing the PcScOH unit, obtained from the hydrolysis of the putative PcSc-alkoxide intermediate. The two structurally characterized systems have a tilted “butterfly” shape structure, reminiscent of bent metallocenes. The solubility of these early transition-metal based complexes present new opportunities for the advancement of this underdeveloped area of PcM chemistry. Time permitting, our related work on organometallic PcLnX complexes will also be described. References Zhou, D.B. Leznoff, Chem. Commun., 2018, 54, 1829-1832. W. Zhou, J.R. Thompson, C.C. Leznoff, D.B. Leznoff, Chem. Eur. J., 2017, 23, 2323-2331; R. Platel, W. Zhou, T.T. Tasso, T. Furuyama, N. Kobayashi, D.B. Leznoff, Chem. Commun., 2015, 5986-89; D. McKearney, W. Zhou, V.E. Williams, D.B. Leznoff, Chem. Commun., 2019, 55, 6696-6699; Y. Ganga-Sah, E. Tajbakhsh, R.H. Platel, W. Zhou, D.B. Leznoff, J. Porph. Phthalocyanines, 2019, 23, 1592-1602; W. Zhou, D. McKearney, D.B. Leznoff, Chem. Eur. J., 2020, 26, 1027-31.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Molter, Anja, Julia Kuchar et Fabian Mohr. « Acylselenoureas, selenosemicarbazones and selenocarbamate esters : Versatile ligands in coordination chemistry ». New Journal of Chemistry 46, no 10 (2022) : 4534–49. http://dx.doi.org/10.1039/d2nj00026a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Holloway, Clive, et Milan Melnik. « Crystallographic and structural characterisation of heterometallic platinum compounds : Part I. Heterobinuclear Pt compounds ». Open Chemistry 9, no 4 (1 août 2011) : 501–48. http://dx.doi.org/10.2478/s11532-011-0054-2.

Texte intégral
Résumé :
AbstractThis review covers almost 290 heterobinuclear Pt derivatives. When the heterometals (M) are non transition and the binuclear are found both with and without a metal to metal bond. Where M is a transition metal or actinide, only those with a metal-metal bond have been included here. There are thirteen non-transition metals (Sn, Hg, Ge, Sb, Tl, Zn, Pb, Cd, Na, K, Ga, Ca and In). The shortest Pt-M bond distance is 235.2(1) (Pt-Ge). There are eighteen transition metals (Fe, W, Rh, Re, Pd, Ag, Ir, Mo, Mn, Re, Co, Cu, Cr, Au, Ni, Ti, Ta and V). The shortest Pt-M bond distance is 249.5(2) pm (Pt-Cr). There is one example of an actinide, Pt-Th at 298.4(1) pm. The Pt atom has oxidation numbers 0, +2 and +4. The Pt coordination geometries include square planar (most common), trigonal bipyramidal, pseudo octahedral (Pt(IV)) and a few prevalently capped trigonal prismatic seven coordinate species. There are at least two types of isomerism distortion and polymerisation. Factors affecting bond lengths and angles are discussed and some ambiguities in coordination polyhedra are outlined.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ramler, Jacqueline, et Crispin Lichtenberg. « Bismuth species in the coordination sphere of transition metals : synthesis, bonding, coordination chemistry, and reactivity of molecular complexes ». Dalton Transactions 50, no 21 (2021) : 7120–38. http://dx.doi.org/10.1039/d1dt01300a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Coordination Chemistry - Non-Transition Metals"

1

Sze-To, Lap, et 司徒立. « The structural chemistry of coordination compounds containing d-block or f-block metals ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B45204470.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Aucott, Stephen Mark. « Coordination chemistry of aminophosphine ligands ». Thesis, Loughborough University, 1999. https://dspace.lboro.ac.uk/2134/34492.

Texte intégral
Résumé :
The reaction of [MCl2(cod)] (M = Pt, Pd) with two equivalents of 2-(diphenylphosphinoamino)pyridine, Ph2PNHpy, in warm acetonitrile led to cationic complexes of the type cis-[MCl(Ph2PNHpy-P,N){Ph2PNHpy-P}][Cl] (M = Pt, Pd) which exhibit broad single 31P{1H} NMR resonances due to their dynamic pyridyl exchange behaviour in solution. A single crystal X-ray diffraction study of the platinum species confirmed the proposed structure and revealed that adjacent complex molecules were held together by hydrogen bonding to the same chloride counter-ion. The bromo- and iodo-cis[MX(Ph2PNHpy-P,N){Ph2PNHpy-P}][X] (M = Pt, Pd; X = Br, I) complexes were obtained by metathesis from the corresponding chloride complex.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Chotalia, Rohit. « The synthesis and coordination chemistry of novel oligopyridine ligands ». Thesis, University of Cambridge, 1993. https://www.repository.cam.ac.uk/handle/1810/272580.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Reinhardt, Maxwell James. « Metal complexes containing non-innocent ligands for functional materials ». Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/11723.

Texte intégral
Résumé :
The existence of complexes of that display non-innocence has been of interest in the field of coordination chemistry since the investigations of square-planar dithiolene complexes of the late transition metals in the 1960s. The ligands used in these systems are termed “non-innocent” when bound to a number of the late transition metals, because the orbital energy levels are similar to those of the central metal ion. This allows there to be significant electron delocalisation over the complex with the potential for the complexes to exist in a number of electronic states due to the combined electrochemical activity. In 1966, Jørgensen classified innocence as ligands that “allow oxidation states of the central atoms to be defined”, thus by this logic non-innocent ligands are defined as complexes where the precise oxidation states of the ligand and metal are ambiguously assigned. However it should be noted that no ligand is inherently non-innocent, but rather the ligand may behave in a non-innocent manner under the right circumstances. The qualification of non-innocence should therefore only be applied to combinations of metal and ligand that result in the aforementioned properties. In this thesis, the term “non-innocent” will be used to define ligands that often possess non-innocent behaviour when complexed to the metal centres they are bound to. A general form of ligand that displays non-innocent behaviour is that of the 1,2-bidentate moiety with an unsaturated carbon backbone. The chelating donor groups (X) are either O, NH, S, or a combination of the three. The central transition metal is generally a late metal that favours a square-planar geometry, because the planarity of the complex is crucial for electron delocalisation within the molecule and molecular interactions in the solid material. When the metal is nickel or platinum for example, their square-planar complexes with such ligands have shown threemembered electron-transfer series. Specific examples of ligands that have been shown to display non-innocent behaviour are those of catechol (1,2-dihydroxybenzene) and 1,2-diaminobenzene, where the unsaturated backbone is provided by a phenyl group. The electronic nature of these compounds has been extensively investigated by the groups of Pierpont and Lever, with focus on their redox and magnetic properties. The combined metal and ligand redox activity results in interesting magnetic behaviour, with potential for magnetic exchange interactions between a paramagnetic metal centre and the radical ligand or between two radical ligands mediated by a diamagnetic metal centre. This research has been advanced by Wieghardt and co-workers who have performed experimental and theoretical examination of non-innocent complexes of 1,2-substituted phenyl chelates, where the donor group is a combination of O and NH. These studies have focused on the understanding the nature of the metal-ligand interactions to apply to biological systems, such as those observed at the active site of enzymes that act upon molecules with similar moieties to the non-innocent ligands. Compounds of catechol may be referred to as dioxolenes in analogy to the sulfur-based dithiolenes. The deprotonated, dianionic form of catechol is known as catecholate (cat), which can be readily oxidised to the monoanionic o-semiquinone (SQ) and neutral o-benzoquinone (Q) forms. It has been seen that catecholate compounds can be described by localised electronic states with defined oxidation states, unlike many of the dithiolene class of molecules. However these states can exist in equilibrium with each other when the metal and ligand orbitals are close in energy, with differences in the charge and spin definition in what has been described as “valence tautomerism”. Therefore, although the complexes may not be seen as non-innocent by definition that their oxidation states are not ambiguous, it is still a useful description due to the potential for easily accessible charge states. Metal dithiolene complexes, where the metal is coordinated by one or more ligands with two S-donor atoms linked by a conjugated backbone, are one of the best researched of the non-innocent class of molecules. The square-planar bis-dithiolenes of the late transition metals have interesting magnetic, optical and electrical properties arising from the delocalised nature of the constituent metal and ligand orbitals, which has enabled their use for a wide range of applications such as non-linear optics, transistors and near-infrared switches. Of particular interest is the ability to fine tune the electrical properties to fit the application by changing the substituents on the core dithiolene moiety. For example, Anthopoulos has shown that by lowering the energy of the lowest unoccupied molecular orbital (LUMO), stable n-channel conductivity can be observed in field-effect transistors (FETs). Materials based on square-planar non-innocent complexes have been tested in FETs, and been seen to display field-effect mobilities as high as 10˗2 cm2 V˗1 s˗1 as with Ni bis(o-diiminobenzo-semiquinonate) complexes. Most of these molecules are based on conjugated, chelating ligands such as 1,2-diaminobenzene and the dithiolene class of molecules. Field-effects have also been observed in square-planar Pt complexes, where the conductivity is thought to arise from beneficial Pt-Pt bonds in addition to the π-stacking between molecules. Despite the similarity to the diaminobenzene and dithiolene counterpart, there are no reports of catechol-based materials displaying field-effect properties in the literature. Catechol compounds are well-researched in the field of biological chemistry due to the prevalence of the catechol moiety and enzymes with which it interacts in nature. However they have not been examined far beyond their simple coordination chemistry or chemical characterisation.
Styles APA, Harvard, Vancouver, ISO, etc.
5

McCart, Mark Kevin. « Some diphosphine chemistry of the transition metals ruthenium, palladium, platinum and nickel ». Thesis, University of Liverpool, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263849.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Moneo, Corcuera Andrea. « Bistable molecular materials : triazole-based coordination chemistry of first row transition metals ». Doctoral thesis, Universitat Rovira i Virgili, 2019. http://hdl.handle.net/10803/668881.

Texte intégral
Résumé :
En la present tesi doctoral presentem el magnetisme molecular bàsic de compostos de coordinació basats en un lligant di-anionico: (L-2 = 4- (1,2,4-triazole-4-il) etanosulfonato). En particular, vam estudiar el fenomen de transició d'espín d'un trímer de ferro (II) poli-aniònic en diferents escales, des d'una escala macroscòpica ("bulk") fins a nivells moleculars, acabant amb la deposició en superfície. D'una banda, el comportament SCO "macroscòpic" es va modular canviant l'empaquetatge de vidre i la connectivitat entre els trímers amb una estratègia d'intercanvi catiònic. D'altra banda, hem trobat bi-estabilitat en sistemes altament diluïts del trímer de Fe (II), en una solució mixta sòlida i en dissolució, on les forces de cooperació entre trímers s'hi han reduït fins a nivells moleculars. Aquest resultat ens anima a estudiar la deposició i el comportament del trímer en diverses superfícies amb vista a un primer acostament cap a una aplicació real. Finalment, hem fabricat una pel·lícula nanomètrica del compost sobre sílice, amb propietats de transició d'espín intactes. A més, també vam poder impulsar el procés de miniaturització més enllà de la mida nanomètrica en créixer una subcapa ordenada del complex en una superfície d'or a través d'una deposició d'alt buit.
En la presente tesis doctoral presentamos el magnetismo molecular básico de compuestos de coordinación basados en uno ligando *di-*anionico: (L-2 = 4- (1,2,4-*triazole-4-*il) *etanosulfonato). En particular, estudiamos el fenómeno de transición de espín de un trímero de hierro (II) *poli-aniónico en diferentes escalas, desde una escala macroscópica ("*bulk") hasta niveles moleculares, acabando con la deposición en superficie. Por un lado, el comportamiento *SCO "macroscópico" se moduló cambiando el empaque de vidrio y la conectividad entre los trímeros con una estrategia de intercambio catiónico. Por otro lado, hemos encontrado *bi-estabilidad en sistemas altamente diluidos del trímero de Fe (II), en una solución mixta sólida y en disolución, donde las fuerzas de cooperación entre trímeros se han reducido hasta niveles moleculares. Este resultado nos anima a estudiar la deposición y el comportamiento del trímero en varias superficies en orden a un primer acercamiento hacia una aplicación real. Finalmente, hemos fabricado una película *nanomètrica del compuesto sobre sílice, con propiedades de transición de espín intactos. Además, también pudimos impulsar el proceso de miniaturización más allá de la medida *nanomètrica al crecer una *subcapa ordenada del complejo en una superficie de oro a través de una deposición de alto vacío.
At the present doctoral thesis present the basic molecular magnetism of compounds of coordination based at one binding *di-*anionico: (*L-2 = 4- (1,2,4-*triazole-4-*il) *etanosulfonato). In particular, we studied the phenomenon of transition of spin of a trimer of iron (*II) *poli-*aniònic at distinct scales, since a macroscopic scale ("*bulk") until molecular levels, ending with the deposition at surface. On the one hand, the behaviour *SCO "macroscopic" modulated capsizing the packaging of glass and the connectivity among the trimers with a strategy of exchange *catiònic. On the other hand, we have found *bi-stability at systems highly diluted of the trimer of Faith (*II), at a solid mixed solution and at dissolution, where the forces of cooperation among trimers have reduced until molecular levels. This result warms us at studying the deposition and the behaviour of the trimer at several surfaces with a view to a first approach to a real app. Finally, we have fashioned a film *nanomètrica of the compound on silica, with properties of transition of intact spin. Besides, also we could further the process of miniaturisation further of the size *nanomètrica at growing a *subcapa ordered of the complex at a surface of gold through a deposition of tall void.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Jafarpour, Laleh. « New ligands, design and coordination chemistry with the transition metals and lanthanides ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0009/NQ38903.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Holmes, Nicholas J. « Synthesis and coordination of stibine and bismuthine ligands with transition metals ». Thesis, University of Southampton, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299499.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Haque, Nadera. « Coordination Chemistry of Barbituric Acid, its Diethyl Derivative and Benzildiimine with Transition Metals ». Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-115621.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

De, Jongh Leigh-Anne. « Imine-donor complexes with group 6 and group 11 transition metals : coordination and dynamics ». Thesis, Stellenbosch : Stellenbosch University, 2008. http://hdl.handle.net/10019.1/2001.

Texte intégral
Résumé :
Thesis (MSc (Chemistry and Polymer Science))--Stellenbosch University, 2008.
In this study the coordination of ligands with several coordination sites, 2-aminoazoles (2- amino-4-methylthiazole), 2-aminobenzothiazole, 2-aminobenzoimidazole and 2- aminothiazoline and a biguanidine (N-(2-methylphenyl)imidodicarbonimidic diamide) to soft metal centres [gold(I) (group 11), chromium(0) (group 6) and tungsten (0) (group 6)] was investigated. The aminoazoles have three coordination sites, an exocyclic amine nitrogen, an endocyclic imine nitrogen and an endocyclic thioether sulphur. The biguanidine ligand has three sites for deprotonation, one central amine and two imine nitrogens, and at least five sites available for nitrogen coordination.
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Coordination Chemistry - Non-Transition Metals"

1

A, Herrmann W., Astruc D, Okuda J et Zybill Ch, dir. Transition metall [sic] coordination chemistry. Berlin : Springer-Verlag, 1992.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

1934-, Veillard A., North Atlantic Treaty Organization. Scientific Affairs Division. et Société de chimie physique. International Meeting, dir. Quantum chemistry : The challenge of transition metals and coordination chemistry. Dordrecht : D. Reidel Pub. Co., 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

1940-, Trautwein Alfred, et Deutsche Forschungsgemeinschaft, dir. Bioinorganic chemistry : Transition metals in biology and their coordination chemistry. Bonn, Germany : Deutsche Forschungsgemeinschaft, 1997.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Veillard, A., dir. Quantum Chemistry : The Challenge of Transition Metals and Coordination Chemistry. Dordrecht : Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4656-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Organotransition metal chemistry : From bonding to catalysis. Sausalito, Calif : University Science Books, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Yamaguchi, Ryohei. Ligand platforms in homogenous catalytic reactions with metals : Practice and applications for green organic transformations. Hoboken, New Jersey : Wiley, 2015.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Herrmann, W. A., dir. Transition Metall Coordination Chemistry. Berlin, Heidelberg : Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/3-540-54324-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Chi-Ming, Che, et Yam Vivian W. W, dir. Advances in transition metal coordination chemistry. Greenwich, Co : Jai Press, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

M, Neĭman K., et Zhidomirov G. M, dir. Kvantovai͡a︡ khimii͡a︡ i spektroskopii͡a︡ vysokovozbuzhdennykh sostoi͡a︡niĭ : Koordinat͡s︡ionnye soedinenii͡a︡ perekhodnykh metallov. Novosibirsk : "Nauka," Sibirskoe otd-nie, 1990.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Okuda, J., C. Zybill, Wolfgang A. Herrmann et D. Astruc. Transition Metal Coordination Chemistry. Springer Berlin / Heidelberg, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Coordination Chemistry - Non-Transition Metals"

1

Escudero, Daniel. « Photodeactivation Channels of Transition Metal Complexes : A Computational Chemistry Perspective ». Dans Transition Metals in Coordination Environments, 259–87. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11714-6_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Stein, Matthias. « Anisotropic Magnetic Spin Interactions of Transition Metal Complexes and Metalloenzymes from Spectroscopy and Quantum Chemistry ». Dans Transition Metals in Coordination Environments, 35–64. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11714-6_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

McCleverty, J. A. « Towards Molecular Wires and Switches : Exploiting Coordination Chemistry for Non-Linear Optics and Molecular Electronics ». Dans Transition Metals in Supramolecular Chemistry, 261–78. Dordrecht : Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8380-0_14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Hirao, Hajime. « Applications of Computational Chemistry to Selected Problems of Transition-Metal Catalysis in Biological and Nonbiological Systems ». Dans Transition Metals in Coordination Environments, 463–86. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11714-6_15.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Hall, Michael B. « Multiple Metal-Metal and Metal-Carbon Bonds ». Dans Quantum Chemistry : The Challenge of Transition Metals and Coordination Chemistry, 391–401. Dordrecht : Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4656-9_28.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Wedig, Ulrich, Michael Dolg, Hermann Stoll et Heinzwerner Preuss. « Energy-Adjusted Pseudopotentials for Transition-Metal Elements ». Dans Quantum Chemistry : The Challenge of Transition Metals and Coordination Chemistry, 79–89. Dordrecht : Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4656-9_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Koga, Nobuaki, et Keiji Morokuma. « Transition State for Carbonyl and Olefin Insertion Reactions ». Dans Quantum Chemistry : The Challenge of Transition Metals and Coordination Chemistry, 351–61. Dordrecht : Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4656-9_25.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Rösch, N., H. Jörg et B. I. Dunlap. « Applications of the LCGTO-Xα Method to Transition Metal Carbonyls ». Dans Quantum Chemistry : The Challenge of Transition Metals and Coordination Chemistry, 179–87. Dordrecht : Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4656-9_13.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Walch, Stephen P., et Charles W. Bauschlicher. « The Nature of the Bonding in the Transition Metal Trimers ». Dans Quantum Chemistry : The Challenge of Transition Metals and Coordination Chemistry, 119–34. Dordrecht : Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4656-9_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Peruzzini, Maurizio, Isaac De Los Rios et Antonio Romerosa. « Coordination Chemistry of Transition Metals with Hydrogen Chalcogenide and Hydrochalcogenido Ligands ». Dans Progress in Inorganic Chemistry, 169–453. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470166512.ch3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie