Livres sur le sujet « Convection (Oceanography) »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Convection (Oceanography).

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 21 meilleurs livres pour votre recherche sur le sujet « Convection (Oceanography) ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les livres sur diverses disciplines et organisez correctement votre bibliographie.

1

Pawlowicz, Ryszard A. Tomographic observations of deep convection and the thermal evolution of the Greenland Sea Gyre, 1988-1989. Woods Hole, Mass : Woods Hole Oceanographic Institution, 1994.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Plate, E. J. Buoyant Convection in Geophysical Flows. Dordrecht : Springer Netherlands, 1998.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Alverson, Keith D. Topographic preconditioning of open ocean deep convection / by Keith D. Alverson. Woods Hole, Mass : Woods Hole Oceanographic Institution, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Salmon, Rick. Rotating convection : 1995 Summer Study Program in Geophysical Fluid Dynamics. Woods Hole, Mass : Woods Hole Oceanographic Institution, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Harrison, D. E. Upper ocean warming : Spatial patterns of trends and interdecadal variability. Seattle, Wash : U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Oceanic and Atmospheric Research Laboratories, Pacific Marine Environmental Laboratory, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Whitehead, John A. Rotating hydraulic control : 1997 summer study program in geophysical fluid dynamics. Woods Hole, Mass : Woods Hole Oceanographic Institution, 1998.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Flierl, Glenn R. The influence of convection on large-scale circulations : 1988 Summer Study Program in Geophysical Fluid Dynamics. Woods Hole, Mass : WHOI, 1989.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

International Monterey Colloquium on Deep Convection and Deep Water Formation in the Oceans (1990). Deep convection and deep water formation in the oceans : Proceedings of the International Monterey Colloquium on Deep Convection and Deep Water Formation in the Oceans. Amsterdam : Elsevier, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Stommel, Henry M. Collected works of Henry M. Stommel. Boston, MA : American Meteorological Society, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Zhang, Yanwu. Spectral feature classification of oceanographic processes using an autonomous underwater vehicle. Cambridge, Mass : Massachusetts Institute of Technology, 2000.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Casamitjana, X. La física de l'estany de Banyoles. Barcelona : Institut d'Estudis Catalans, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Zimmerman, Sarah. Knorr 147 leg V hydrographic data report : Labrador Sea Deep Convection Experiment. Woods Hole, Mass : WHOI, 2000.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Chassignet, Eric P. Buoyancy-driven flows. Cambridge : Cambridge University Press, 2012.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Zahn, Rainer. North Atlantic thermohaline circulation during the last glacial period : Evidence for coupling between meltwater events and convective instability. Kiel : Forschungszentrum für Marine Geowissenschaften der Christian-Albrechts-Universität zu Kiel, 1997.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Radko, Timour. Double-Diffusive Convection. Cambridge University Press, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Radko, Timour. Double-Diffusive Convection. Cambridge University Press, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Radko, Timour. Double-Diffusive Convection. Cambridge University Press, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Radko, Timour. Double-Diffusive Convection. Cambridge University Press, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Shearman, R. Kipp. Dynamics of mesoscale motion in the California current. 1999.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

A convection model for hydrothermal plumes in a cross flow. Seattle, Wash : U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1994.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Benestad, Rasmus. Climate in the Barents Region. Oxford University Press, 2018. http://dx.doi.org/10.1093/acrefore/9780190228620.013.655.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
The Barents Sea is a region of the Arctic Ocean named after one of its first known explorers (1594–1597), Willem Barentsz from the Netherlands, although there are accounts of earlier explorations: the Norwegian seafarer Ottar rounded the northern tip of Europe and explored the Barents and White Seas between 870 and 890 ce, a journey followed by a number of Norsemen; Pomors hunted seals and walruses in the region; and Novgorodian merchants engaged in the fur trade. These seafarers were probably the first to accumulate knowledge about the nature of sea ice in the Barents region; however, scientific expeditions and the exploration of the climate of the region had to wait until the invention and employment of scientific instruments such as the thermometer and barometer. Most of the early exploration involved mapping the land and the sea ice and making geographical observations. There were also many unsuccessful attempts to use the Northeast Passage to reach the Bering Strait. The first scientific expeditions involved F. P. Litke (1821±1824), P. K. Pakhtusov (1834±1835), A. K. Tsivol’ka (1837±1839), and Henrik Mohn (1876–1878), who recorded oceanographic, ice, and meteorological conditions.The scientific study of the Barents region and its climate has been spearheaded by a number of campaigns. There were four generations of the International Polar Year (IPY): 1882–1883, 1932–1933, 1957–1958, and 2007–2008. A British polar campaign was launched in July 1945 with Antarctic operations administered by the Colonial Office, renamed as the Falkland Islands Dependencies Survey (FIDS); it included a scientific bureau by 1950. It was rebranded as the British Antarctic Survey (BAS) in 1962 (British Antarctic Survey History leaflet). While BAS had its initial emphasis on the Antarctic, it has also been involved in science projects in the Barents region. The most dedicated mission to the Arctic and the Barents region has been the Arctic Monitoring and Assessment Programme (AMAP), which has commissioned a series of reports on the Arctic climate: the Arctic Climate Impact Assessment (ACIA) report, the Snow Water Ice and Permafrost in the Arctic (SWIPA) report, and the Adaptive Actions in a Changing Arctic (AACA) report.The climate of the Barents Sea is strongly influenced by the warm waters from the Norwegian current bringing heat from the subtropical North Atlantic. The region is 10°C–15°C warmer than the average temperature on the same latitude, and a large part of the Barents Sea is open water even in winter. It is roughly bounded by the Svalbard archipelago, northern Fennoscandia, the Kanin Peninsula, Kolguyev Island, Novaya Zemlya, and Franz Josef Land, and is a shallow ocean basin which constrains physical processes such as currents and convection. To the west, the Greenland Sea forms a buffer region with some of the strongest temperature gradients on earth between Iceland and Greenland. The combination of a strong temperature gradient and westerlies influences air pressure, wind patterns, and storm tracks. The strong temperature contrast between sea ice and open water in the northern part sets the stage for polar lows, as well as heat and moisture exchange between ocean and atmosphere. Glaciers on the Arctic islands generate icebergs, which may drift in the Barents Sea subject to wind and ocean currents.The land encircling the Barents Sea includes regions with permafrost and tundra. Precipitation comes mainly from synoptic storms and weather fronts; it falls as snow in the winter and rain in the summer. The land area is snow-covered in winter, and rivers in the region drain the rainwater and meltwater into the Barents Sea. Pronounced natural variations in the seasonal weather statistics can be linked to variations in the polar jet stream and Rossby waves, which result in a clustering of storm activity, blocking high-pressure systems. The Barents region is subject to rapid climate change due to a “polar amplification,” and observations from Svalbard suggest that the past warming trend ranks among the strongest recorded on earth. The regional change is reinforced by a number of feedback effects, such as receding sea-ice cover and influx of mild moist air from the south.

Vers la bibliographie