Sommaire
Littérature scientifique sur le sujet « Contrastive Explanat »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Contrastive Explanat ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Contrastive Explanat"
Jolayemi, Okanlawon Lekan, Jelili Titilola Opabode et Gueye Badara. « In vitro response of three contrasting cassava (Manihot esculenta Crantz) varieties to mannitol-induced drought stress ». Agricultura Tropica et Subtropica 51, no 3 (1 septembre 2018) : 125–31. http://dx.doi.org/10.2478/ats-2018-0014.
Texte intégralJolayemi, Okanlawon Lekan, Jelili Titilola Opabode et Gueye Badara. « In vitro response of three contrasting cassava (Manihot esculenta Crantz) varieties to mannitol-induced drought stress ». Agricultura Tropica et Subtropica 51, no 3 (1 septembre 2018) : 125–31. http://dx.doi.org/10.1515/ats-2018-0014.
Texte intégralStromberg, Zachary R., Rick E. Masonbrink et Melha Mellata. « Transcriptomic Analysis of Shiga Toxin-Producing Escherichia coli during Initial Contact with Cattle Colonic Explants ». Microorganisms 8, no 11 (27 octobre 2020) : 1662. http://dx.doi.org/10.3390/microorganisms8111662.
Texte intégralAbbasi, Bilal, Aisha Siddiquah, Duangjai Tungmunnithum, Shankhamala Bose, Muhammad Younas, Laurine Garros, Samantha Drouet, Nathalie Giglioli-Guivarc’h et Christophe Hano. « Isodon rugosus (Wall. ex Benth.) Codd In Vitro Cultures : Establishment, Phytochemical Characterization and In Vitro Antioxidant and Anti-Aging Activities ». International Journal of Molecular Sciences 20, no 2 (21 janvier 2019) : 452. http://dx.doi.org/10.3390/ijms20020452.
Texte intégralNiiniluoto, Ilkka. « Explanation by Idealized Theories ». Kairos. Journal of Philosophy & ; Science 20, no 1 (1 juin 2018) : 43–63. http://dx.doi.org/10.2478/kjps-2018-0003.
Texte intégralStarck, Zofia, et Barbara Witek-Czupryńska. « Diverse response of tomato fruit explants to high temperature ». Acta Societatis Botanicorum Poloniae 62, no 3-4 (2014) : 165–69. http://dx.doi.org/10.5586/asbp.1993.025.
Texte intégralDonovan, N. J., C. A. Offord et J. L. Tyler. « Vegetative cutting and in vitro propagation of the tree waratah, Alloxylon flammeum P. Weston and Crisp (family Proteaceae) ». Australian Journal of Experimental Agriculture 39, no 2 (1999) : 225. http://dx.doi.org/10.1071/ea97106.
Texte intégralRehen, S. K., M. H. Varella, F. G. Freitas, M. O. Moraes et R. Linden. « Contrasting effects of protein synthesis inhibition and of cyclic AMP on apoptosis in the developing retina ». Development 122, no 5 (1 mai 1996) : 1439–48. http://dx.doi.org/10.1242/dev.122.5.1439.
Texte intégralWeenink, Don, David van der Duin, Laura Keesman, Rozalie Lekkerkerk, Floris Mosselman et Phie van Rompu. « Taking social ontology seriously : An interview with Jack Katz ». Ethnography 21, no 2 (25 février 2020) : 198–219. http://dx.doi.org/10.1177/1466138120907333.
Texte intégralBelabbas, Hassiba, Santiago Zalvidea, Daniel Casellas, Jean-Pierre Molès, Olivier Galbes, Jacques Mercier et Bernard Jover. « Contrasting effect of exercise and angiotensin II hypertension on in vivo and in vitro cardiac angiogenesis in rats ». American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 295, no 5 (novembre 2008) : R1512—R1518. http://dx.doi.org/10.1152/ajpregu.00014.2008.
Texte intégralThèses sur le sujet "Contrastive Explanat"
SEVESO, ANDREA. « Symbolic Reasoning for Contrastive Explanations ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2023. https://hdl.handle.net/10281/404830.
Texte intégralThe need for explanations of Machine Learning (ML) systems is growing as new models outperform their predecessors while becoming more complex and less comprehensible for their end-users. An essential step in eXplainable Artificial Intelligence (XAI) research is to create interpretable models that aim at approximating the decision function of a black box algorithm. Though several XAI methods have been proposed in recent years, not enough attention was paid to explaining how models change their behaviour in contrast with other versions (e.g., due to retraining or data shifts). In such cases, an XAI system should explain why the model changes its predictions concerning past outcomes. In several practical situations, human decision-makers deal with more than one machine learning model. Consequently, the importance of understanding how two machine learning models work beyond their prediction performances is growing, to understand their behavior, their differences, and their likeness. To date, interpretable models are synthesised for explaining black boxes and their predictions and can be beneficial for formally representing and measuring the differences in the retrained model's behaviour in dealing with new and different data. Capturing and understanding such differences is crucial, as the need for trust is key in any application to support human-Artificial Intelligence (AI) decision-making processes. This is the idea of ContrXT, a novel approach that (i) traces the decision criteria of a black box classifier by encoding the changes in the decision logic through Binary Decision Diagrams. Then (ii) it provides global, model-agnostic, Model-Contrastive (M-contrast) explanations in natural language, estimating why -and to what extent- the model has modified its behaviour over time. We implemented and evaluated this approach over several supervised ML models trained on benchmark datasets and a real-life application, showing it is effective in catching majorly changed classes and in explaining their variation through a user study. The approach has been implemented, and it is available to the community both as a python package and through REST API, providing contrastive explanations as a service.