Thèses sur le sujet « Continuous Time Bayesian Networks »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleures thèses pour votre recherche sur le sujet « Continuous Time Bayesian Networks ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
Nodelman, Uri D. « Continuous time bayesian networks / ». May be available electronically:, 2007. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Texte intégralACERBI, ENZO. « Continuos time Bayesian networks for gene networks reconstruction ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/52709.
Texte intégralCODECASA, DANIELE. « Continuous time bayesian network classifiers ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/80691.
Texte intégralVILLA, SIMONE. « Continuous Time Bayesian Networks for Reasoning and Decision Making in Finance ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2015. http://hdl.handle.net/10281/69953.
Texte intégralThe analysis of the huge amount of financial data, made available by electronic markets, calls for new models and techniques to effectively extract knowledge to be exploited in an informed decision-making process. The aim of this thesis is to introduce probabilistic graphical models that can be used to reason and to perform actions in such a context. In the first part of this thesis, we present a framework which exploits Bayesian networks to perform portfolio analysis and optimization in a holistic way. It leverages on the compact and efficient representation of high dimensional probability distributions offered by Bayesian networks and their ability to perform evidential reasoning in order to optimize the portfolio according to different economic scenarios. In many cases, we would like to reason about the market change, i.e. we would like to express queries as probability distributions over time. Continuous time Bayesian networks can be used to address this issue. In the second part of the thesis, we show how it is possible to use this model to tackle real financial problems and we describe two notable extensions. The first one concerns classification, where we introduce an algorithm for learning these classifiers from Big Data, and we describe their straightforward application to the foreign exchange prediction problem in the high frequency domain. The second one is related to non-stationary domains, where we explicitly model the presence of statistical dependencies in multivariate time-series while allowing them to change over time. In the third part of the thesis, we describe the use of continuous time Bayesian networks within the Markov decision process framework, which provides a model for sequential decision-making under uncertainty. We introduce a method to control continuous time dynamic systems, based on this framework, that relies on additive and context-specific features to scale up to large state spaces. Finally, we show the performances of our method in a simplified, but meaningful trading domain.
Fan, Yu. « Continuous time Bayesian Network approximate inference and social network applications ». Diss., [Riverside, Calif.] : University of California, Riverside, 2009. http://proquest.umi.com/pqdweb?index=0&did=1957308751&SrchMode=2&sid=1&Fmt=2&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1268330625&clientId=48051.
Texte intégralIncludes abstract. Title from first page of PDF file (viewed March 8, 2010). Available via ProQuest Digital Dissertations. Includes bibliographical references (p. 130-133). Also issued in print.
GATTI, ELENA. « Graphical models for continuous time inference and decision making ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2011. http://hdl.handle.net/10281/19575.
Texte intégralAlharbi, Randa. « Bayesian inference for continuous time Markov chains ». Thesis, University of Glasgow, 2019. http://theses.gla.ac.uk/40972/.
Texte intégralParton, Alison. « Bayesian inference for continuous-time step-and-turn movement models ». Thesis, University of Sheffield, 2018. http://etheses.whiterose.ac.uk/20124/.
Texte intégralTucker, Allan Brice James. « The automatic explanation of Multivariate Time Series with large time lags ». Thesis, Birkbeck (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246924.
Texte intégralCRISTINI, ALESSANDRO. « Continuous-time spiking neural networks : paradigm and case studies ». Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2014. http://hdl.handle.net/2108/202297.
Texte intégralElshamy, Wesam Samy. « Continuous-time infinite dynamic topic models ». Diss., Kansas State University, 2012. http://hdl.handle.net/2097/15176.
Texte intégralDepartment of Computing and Information Sciences
William Henry Hsu
Topic models are probabilistic models for discovering topical themes in collections of documents. In real world applications, these models provide us with the means of organizing what would otherwise be unstructured collections. They can help us cluster a huge collection into different topics or find a subset of the collection that resembles the topical theme found in an article at hand. The first wave of topic models developed were able to discover the prevailing topics in a big collection of documents spanning a period of time. It was later realized that these time-invariant models were not capable of modeling 1) the time varying number of topics they discover and 2) the time changing structure of these topics. Few models were developed to address this two deficiencies. The online-hierarchical Dirichlet process models the documents with a time varying number of topics. It varies the structure of the topics over time as well. However, it relies on document order, not timestamps to evolve the model over time. The continuous-time dynamic topic model evolves topic structure in continuous-time. However, it uses a fixed number of topics over time. In this dissertation, I present a model, the continuous-time infinite dynamic topic model, that combines the advantages of these two models 1) the online-hierarchical Dirichlet process, and 2) the continuous-time dynamic topic model. More specifically, the model I present is a probabilistic topic model that does the following: 1) it changes the number of topics over continuous time, and 2) it changes the topic structure over continuous-time. I compared the model I developed with the two other models with different setting values. The results obtained were favorable to my model and showed the need for having a model that has a continuous-time varying number of topics and topic structure.
Thomas, Zachary Micah. « Bayesian Hierarchical Space-Time Clustering Methods ». The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1435324379.
Texte intégralAcciaroli, Giada. « Calibration of continuous glucose monitoring sensors by time-varying models and Bayesian estimation ». Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3425746.
Texte intégralI sensori minimamente invasivi per il monitoraggio in continua della glicemia, indicati con l’acronimo CGM (continuous glucose monitoring), sono dei dispositivi medici indossabili capaci di misurare la glicemia in tempo reale, ogni 1-5 minuti, per più giorni consecutivi. Questo tipo di misura fornisce un profilo di glicemia quasi continuo che risulta essere un’informazione molto utile per la gestione quotidiana della terapia del diabete. La maggior parte dei dispositivi CGM ad oggi disponibili nel mercato dispongono di un sensore di tipo elettrochimico, solitamente inserito nel tessuto sottocutaneo, che misura una corrente elettrica generata dalla reazione chimica di glucosio-ossidasi. Le misure di corrente elettrica sono fornite dal sensore con campionamento uniforme ad elevata frequenza temporale e vengono convertite in tempo reale in valori di glicemia interstiziale attraverso un processo di calibrazione. La procedura di calibrazione prevede l’acquisizione da parte del paziente di qualche misura di glicemia plasmatica di riferimento tramite dispositivi pungidito. Solitamente, le aziende produttrici di sensori CGM implementano un processo di calibrazione basato su un modello di tipo lineare che approssima, sebbene in intervalli di tempo di durata limitata, la più complessa relazione tra corrente elettrica e glicemia. Di conseguenza, si rendono necessarie frequenti calibrazioni (per esempio, due al giorno) per aggiornare i parametri del modello di calibrazione e garantire una buona accuratezza di misura. Tuttavia, ogni calibrazione prevede l’acquisizione da parte del paziente di misure di glicemia tramite dispositivi pungidito. Questo aumenta la già numerosa lista di azioni che i pazienti devono svolgere quotidianamente per gestire la loro terapia. Lo scopo di questa tesi è quello di sviluppare un nuovo algoritmo di calibrazione per sensori CGM minimamente invasivi capace di garantire una buona accuratezza di misura con il minimo numero di calibrazioni. Nello specifico, si propone i) di sostituire il guadagno ed offset tempo-invarianti solitamente utilizzati nei modelli di calibrazione di tipo lineare con delle funzioni tempo-varianti, capaci di descrivere il comportamento del sensore per intervalli di tempo di più giorni, e per cui sia disponibile dell’informazione a priori riguardante i parametri incogniti; ii) di stimare il valore numerico dei parametri del modello di calibrazione con metodo Bayesiano, sfruttando l’informazione a priori sui parametri di calibrazione in aggiunta ad alcune misure di glicemia plasmatica di riferimento. La tesi è organizzata in 6 capitoli. Nel Capitolo 1, dopo un’introduzione sulle tecnologie dei sensori CGM, viene illustrato il problema della calibrazione. In seguito, vengono discusse alcune tecniche di calibrazione che rappresentano lo stato dell’arte ed i loro problemi aperti, che risultano negli scopi della tesi descritti alla fine del capitolo. Nel Capitolo 2 vengono descritti i dataset utilizzati per l’implementazione delle tecniche di calibrazione. Inoltre, vengono illustrate le metriche di accuratezza e le tecniche di analisi statistica utilizzate per analizzare la qualità dei risultati. Nel Capitolo 3 viene illustrato un algoritmo di calibrazione recentemente proposto in letteratura (Vettoretti et al., IEEE, Trans Biomed Eng 2016). Questo algoritmo rappresenta il punto di partenza dello studio svolto in questa tesi. Più precisamente, viene dimostrato che, grazie all’utilizzo di un prior Bayesiano specifico per ogni giorno di utilizzo, l’algoritmo diventa efficace nel ridurre le calibrazioni da due a una al giorno senza perdita di accuratezza. Tuttavia, il modello lineare di calibrazione utilizzato dall’algoritmo ha dominio di validità limitato a brevi intervalli di tempo tra due calibrazioni successive, rendendo impossibile l’ulteriore riduzione delle calibrazioni a meno di una al giorno senza perdita di accuratezza. Questo determina la necessità di sviluppare un nuovo modello di calibrazione valido per intervalli di tempo più estesi, fino a più giorni consecutivi, come quello sviluppato nel resto di questa tesi. Nel Capitolo 4 viene presentato un nuovo algoritmo di calibrazione di tipo Bayesiano (Bayesian multi-day, BMD). L’algoritmo si basa su un modello della tempo-varianza delle caratteristiche del sensore nei suoi giorni di utilizzo e sulla disponibilità di informazione statistica a priori sui suoi parametri incogniti. Per ogni coppia paziente-sensore, il valore numerico dei parametri del modello è determinato tramite stima Bayesiana sfruttando alcune misure plasmatiche di riferimento acquisite dal paziente con dispositivi pungidito. Inoltre, durante la stima dei parametri, la dinamica introdotta dalla cinetica plasma-interstizio viene compensata tramite deconvoluzione nonparametrica. L’algoritmo di calibrazione BMD viene applicato a due differenti set di dati acquisiti con il sensore commerciale Dexcom (Dexocm Inc., San Diego, CA) G4 Platinum (DG4P) e con un prototipo di sensore Dexcom di nuova generazione (NGD). Nei dati acquisiti con il sensore DG4P, i risultati dimostrano che, nonostante le calibrazioni vengano ridotte (in media da 2 al giorno a 0.25 al giorno), l’ algoritmo BMD migliora significativamente l’accuratezza del sensore rispetto all’algoritmo di calibrazione utilizzato dall’azienda produttrice del sensore. Nei dati acquisiti con il sensore NGD, i risultati sono ancora migliori, permettendo di ridurre ulteriormente le calibrazioni fino a zero. Nel Capitolo 5 vengono analizzati i potenziali margini di miglioramento dell’algoritmo di calibrazione BMD discusso nel capitolo precedente e viene proposta un’ulteriore estensione dello stesso. In particolare, per meglio gestire la variabilità tra sensori e tra soggetti, viene proposto un approccio di calibrazione multi-modello e un metodo Bayesiano di selezione del modello (Multi-model Bayesian framework, MMBF) in cui il modello di calibrazione più probabile a posteriori viene scelto tra un set di possibili candidati. Tale approccio multi-modello viene analizzato in via preliminare su un set di dati simulati generati da un simulatore del paziente diabetico di tipo 1 ben noto in letteratura. I risultati dimostrano che l’accuratezza del sensore migliora in modo significativo con MMBF rispetto ad utilizzare un unico modello di calibrazione. Infine, nel Capitolo 6 vengono riassunti i principali risultati ottenuti in questa tesi, le possibili applicazioni, e i margini di miglioramento per gli sviluppi futuri.
Howells, Timothy Paul. « Pattern recognition in physiological time-series data using Bayesian neural networks ». Thesis, University of Edinburgh, 2003. http://hdl.handle.net/1842/24717.
Texte intégralMurray, Lawrence. « Bayesian learning of continuous time dynamical systems with applications in functional magnetic resonance imaging ». Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/4157.
Texte intégralDodd, Tony. « Prior knowledge for time series modelling ». Thesis, University of Southampton, 2000. https://eprints.soton.ac.uk/254110/.
Texte intégralAnishchenko, Anastasiia [Verfasser], et Oliver [Akademischer Betreuer] Mülken. « Efficiency of continuous-time quantum walks : from networks with disorder to deterministic fractals ». Freiburg : Universität, 2015. http://d-nb.info/1122592876/34.
Texte intégralArastuie, Makan. « Generative Models of Link Formation and Community Detection in Continuous-Time Dynamic Networks ». University of Toledo / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1596718772873086.
Texte intégralShaikh, A. D. « Modelling data and voice traffic over IP networks using continuous-time Markov models ». Thesis, Aston University, 2009. http://publications.aston.ac.uk/15385/.
Texte intégralBurchett, Woodrow. « Improving the Computational Efficiency in Bayesian Fitting of Cormack-Jolly-Seber Models with Individual, Continuous, Time-Varying Covariates ». UKnowledge, 2017. http://uknowledge.uky.edu/statistics_etds/27.
Texte intégralSahin, Elvan. « Discrete-Time Bayesian Networks Applied to Reliability of Flexible Coping Strategies of Nuclear Power Plants ». Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/103817.
Texte intégralMaster of Science
Some external events like earthquakes, flooding, and severe wind, may cause damage to the nuclear reactors. To reduce the consequences of these damages, the Nuclear Energy Institute (NEI) has proposed mitigating strategies known as FLEX (Diverse and Flexible Coping Strategies). After the implementation of FLEX in nuclear power plants, we need to analyze the failure or success probability of these engineering systems through one of the existing methods. However, the existing methods are limited in analyzing the dependencies among components in complex systems. Bayesian networks (BNs) are a graphical and quantitative technique that is utilized to model dependency among events. This thesis shows the effectiveness and applicability of BNs in the reliability analysis of FLEX strategies by comparing it with two other reliability analysis tools, known as Fault Tree Analysis and Markov Chain. According to the reliability analysis results, BN is a powerful and promising method in modeling and analyzing FLEX strategies.
Hill, Laura Anne. « Bayesian networks for modelling time : with an application for modelling survival for gene expression data ». Thesis, Queen's University Belfast, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.527815.
Texte intégralLebre, Sophie. « Stochastic process analysis for Genomics and Dynamic Bayesian Networks inference ». Phd thesis, Université d'Evry-Val d'Essonne, 2007. http://tel.archives-ouvertes.fr/tel-00260250.
Texte intégralFirst we study a parsimonious Markov model called Mixture Transition Distribution (MTD) model which is a mixture of Markovian transitions. The overly high number of constraints on the parameters of this model hampers the formulation of an analytical expression of the Maximum Likelihood Estimate (MLE). We propose to approach the MLE thanks to an EM algorithm. After comparing the performance of this algorithm to results from the litterature, we use it to evaluate the relevance of MTD modeling for bacteria DNA coding sequences in comparison with standard Markovian modeling.
Then we propose two different approaches for genetic regulation network recovering. We model those genetic networks with Dynamic Bayesian Networks (DBNs) whose edges describe the dependency relationships between time-delayed genes expression. The aim is to estimate the topology of this graph despite the overly low number of repeated measurements compared with the number of observed genes.
To face this problem of dimension, we first assume that the dependency relationships are homogeneous, that is the graph topology is constant across time. Then we propose to approximate this graph by considering partial order dependencies. The concept of partial order dependence graphs, already introduced for static and non directed graphs, is adapted and characterized for DBNs using the theory of graphical models. From these results, we develop a deterministic procedure for DBNs inference.
Finally, we relax the homogeneity assumption by considering the succession of several homogeneous phases. We consider a multiple changepoint
regression model. Each changepoint indicates a change in the regression model parameters, which corresponds to the way an expression level depends on the others. Using reversible jump MCMC methods, we develop a stochastic algorithm which allows to simultaneously infer the changepoints location and the structure of the network within the phases delimited by the changepoints.
Validation of those two approaches is carried out on both simulated and real data analysis.
Hamilton, Benjamin Russell. « Applications of bayesian filtering in wireless networks : clock synchronization, localization, and rf tomography ». Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44707.
Texte intégralZiegler-Barranco, Ana, Luis Mera-Barco, Vidal Aramburu-Rojas, Carlos Raymundo, Nestor Mamani-Macedo et Francisco Dominguez. « SCAT Model Based on Bayesian Networks for Lost-Time Accident Prevention and Rate Reduction in Peruvian Mining Operations ». Springer, 2020. http://hdl.handle.net/10757/656168.
Texte intégralSeveral factors affect the activities of the mining industry. For example, accident rates are critical because they affect company ratings in the stock market (Standard & Poors). Considering that the corporate image is directly related to its stakeholders, this study conducts an accident analysis using quantitative and qualitative methods. In this way, the contingency rate is controlled, mitigated, and prevented while serving the needs) of the stakeholders. The Bayesian network method contributes to decision-making through a set of variables and the dependency relationships between them, establishing an earlier probability of unknown variables. Bayesian models have different applications, such as diagnosis, classification, and decision, and establish relationships among variables and cause–effect links. This study uses Bayesian inference to identify the various patterns that influence operator accident rates at a contractor mining company, and therefore, study and assess the possible differences in its future operations.
Wu, Xinying. « Reliability Assessment of a Continuous-state Fuel Cell Stack System with Multiple Degrading Components ». Ohio University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1556794664723115.
Texte intégralLee, Joon-Hee. « Rank-Date Distribution Method (R-D Method) For Daily Time-Series Bayesian Networks And Total Maximum Daily Load Estimation ». DigitalCommons@USU, 2008. https://digitalcommons.usu.edu/etd/132.
Texte intégralMroszczyk, Przemyslaw. « Computation with continuous mode CMOS circuits in image processing and probabilistic reasoning ». Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/computation-with-continuous-mode-cmos-circuits-in-image-processing-and-probabilistic-reasoning(57ae58b7-a08c-4a67-ab10-5c3a3cf70c09).html.
Texte intégralLenz, Lutz Henning. « Automatic Tuning of Integrated Filters Using Neural Networks ». PDXScholar, 1993. https://pdxscholar.library.pdx.edu/open_access_etds/4604.
Texte intégralSelent, Douglas A. « Creating Systems and Applying Large-Scale Methods to Improve Student Remediation in Online Tutoring Systems in Real-time and at Scale ». Digital WPI, 2017. https://digitalcommons.wpi.edu/etd-dissertations/308.
Texte intégralJagannathan, Ramanujan. « Evaluation of Crossover Displaced Left-turn (XDL) Intersections and Real-time Signal Control Strategies with Artificial Intelligence Techniques ». Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/10144.
Texte intégralMaster of Science
Iacopini, Matteo. « Essays on econometric modelling of temporal networks ». Thesis, Paris 1, 2018. http://www.theses.fr/2018PA01E058/document.
Texte intégralGraph theory has long been studied in mathematics and probability as a tool for describing dependence between nodes. However, only recently it has been implemented on data, giving birth to the statistical analysis of real networks.The topology of economic and financial networks is remarkably complex: it is generally unobserved, thus requiring adequate inferential procedures for it estimation, moreover not only the nodes, but the structure of dependence itself evolves over time. Statistical and econometric tools for modelling the dynamics of change of the network structure are lacking, despite their increasing requirement in several fields of research. At the same time, with the beginning of the era of “Big data” the size of available datasets is becoming increasingly high and their internal structure is growing in complexity, hampering traditional inferential processes in multiple cases.This thesis aims at contributing to this newborn field of literature which joins probability, economics, physics and sociology by proposing novel statistical and econometric methodologies for the study of the temporal evolution of network structures of medium-high dimension
Romano, Michele. « Near real-time detection and approximate location of pipe bursts and other events in water distribution systems ». Thesis, University of Exeter, 2012. http://hdl.handle.net/10871/9862.
Texte intégralJunuthula, Ruthwik Reddy. « Modeling, Evaluation and Analysis of Dynamic Networks for Social Network Analysis ». University of Toledo / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1544819215833249.
Texte intégralVigraham, Saranyan A. « An Analog Evolvable Hardware Device for Active Control ». Wright State University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=wright1195506953.
Texte intégralTugui, Catalin Adrian. « Design Methodology for High-performance Circuits Based on Automatic Optimization Methods ». Thesis, Supélec, 2013. http://www.theses.fr/2013SUPL0002/document.
Texte intégralThe aim of this thesis is to establish an efficient analog design methodology, the algorithms and the corresponding design tools which can be employed in the dynamic conception of linear continuous-time (CT) functions. The purpose is to assure that the performance figures for a complete system can be rapidly investigated, but with comparable accuracy to the transistor-level evaluations. A first research direction implied the development of the novel design methodology based on the automatic optimization process of transistor-level cells using a modified Bayesian Kriging approach and the synthesis of robust high-level analog behavioral models in environments like Mathworks – Simulink, VHDL-AMS or Verilog-A.The macro-model extraction process involves a complete set of analyses (DC, AC, transient, parametric, Harmonic Balance) which are performed on the analog schematics implemented on a specific technology process. Then, the extraction and calculus of a multitude of figures of merit assures that the models include the low-level characteristics and can be directly regenerated during the optimization process.The optimization algorithm uses a Bayesian method, where the evaluation space is created by the means of a Kriging surrogate model, and the selection is effectuated by using the expected improvement (EI) criterion subject to constraints.A conception tool was developed (SIMECT), which was integrated as a Matlab toolbox, including all the macro-models extraction and automatic optimization techniques
FREIRE, Arthur Silva. « Modelo de redes bayesianas para melhoria do trabalho em equipe em projetos ágeis de desenvolvimento de software ». Universidade Federal de Campina Grande, 2016. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/766.
Texte intégralMade available in DSpace on 2018-05-22T12:37:25Z (GMT). No. of bitstreams: 1 ARTHUR SILVA FREIRE -DISSERTAÇÃO (PPGCC) 2016.pdf: 2232664 bytes, checksum: 7d856251235ae5bacc2b971e556d50e3 (MD5) Previous issue date: 2016
Capes
A utilização de métodos ágeis requer que os indivíduos e as interações entre eles sejam considerados mais importantes que processos e ferramentas. Além disso, equipes ágeis precisam ser auto-organizáveis para garantir rápida agregação de valor e responsividade à mudança. Para isso, é necessário que todos os membros da equipe colaborem entre si e entendam o conceito de responsabilidade e comprometimento por parte de todos. Na literatura, é destacado o impacto positivo que fatores relacionados ao Trabalho em Equipe têm sobre o sucesso de projetos geridos com métodos ágeis. Em alguns trabalhos, ferramentas para avaliar e identificar oportunidades de melhoria do Trabalho em Equipe são apresentadas. Entretanto, no contexto em que se insere este trabalho, elas apresentam limitações, pois não focam em projetos ágeis, dependem apenas de avaliação subjetiva, ou não levam em consideração fatores-chave essenciais do ponto de vista da qualidade do Trabalho em Equipe. Portanto, neste trabalho, é apresentado um modelo de Redes Bayesianas para avaliar e identificar oportunidades de melhoria do Trabalho em Equipe em projetos de software geridos com métodos ágeis. A motivação para utilizar Redes Bayesianas advém da sua adequação para modelar incertezas em um determinado domínio, além da facilidade para modelar e quantificar os relacionamentos entre os fatores-chave que influenciam a qualidade do Trabalho em Equipe. Além do modelo, também é apresentado um procedimento para auxiliar na sua utilização. O modelo e o procedimento foram avaliados em um estudo de caso com três equipes de desenvolvimento de software. De acordo com os resultados do estudo de caso, foi possível concluir que o modelo mensura a qualidade do Trabalho em Equipe precisamente, ajudando na identificação de oportunidades de melhoria desse fator, e o custo-benefício de sua utilização como procedimento proposto é positivo.
Agile methods consider individuals and interactions more important than processes and tools. In addition, agile teams are required to be self-organized to ensure rapid aggregation of value and responsiveness to change. Thereby, it is necessary that team members collaborate to embrace the concept of whole-team responsibility and commitment. In the literature, it is shown that teamwork factors are critical to achieve success in agile projects. Some researchers have proposed tools for assessing and improving teamwork quality. However, in the context of agile software development, these tools are limited because they don’t focus on agile projects, depend on subjective assessment, or don’t include important teamwork quality key factors. Therefore, we present a Bayesian Network model to assess and improve agile teams’ teamwork quality. The motivation to use Bayesian Networks comes from its suitability for modeling uncertainties in a given domain, in addition to the easiness to model and quantify the relationships between the teamwork quality key factors. Besides the model, a procedure for using the model is also presented. Both model and procedure were evaluated in a case study with three units of analysis (i.e., agile software development teams). According to the case study results, the model measures the teamwork quality precisely, assisting on the identification of improvement opportunities for this factor, and the cost-benefit for using it with the presented procedure is positive.
Virbalas, Linas. « Informacinių technologijų rizikos valdymo sistema ». Master's thesis, Lithuanian Academic Libraries Network (LABT), 2009. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2008~D_20090908_201756-32001.
Texte intégralBy this work we present an IT risk management system, which is capable to model and manage risks that arise from IT wich are related with IS downtimes and slow response times. The system is implemented by using a proposed neural network architecture as a heart of the modeling engine. It is trained with accumulated datasets from existing information systems. The user shows for the system which statistical data time series one needs to model – i.e. the one which represents the risk (like server load, IS response time, etc.). The system automatically determines correlated statistical time series, groups them and creates a separate model for each group – this model generalizes until then unknown relationship between time series by invoking neural network. The model then accepts values of the input parameters and the system models the value of the risk parameter. Experiments have shown that the proposed system can be successfully used in a mixed IT environment and can be rewarding for one who tracks IT risks coming from various IT and IS components.
Harlé, Flore. « Détection de ruptures multiples dans des séries temporelles multivariées : application à l'inférence de réseaux de dépendance ». Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAT043/document.
Texte intégralThis thesis presents a method for the multiple change-points detection in multivariate time series, and exploits the results to estimate the relationships between the components of the system. The originality of the model, called the Bernoulli Detector, relies on the combination of a local statistics from a robust test, based on the computation of ranks, with a global Bayesian framework. This non parametric model does not require strong hypothesis on the distribution of the observations. It is applicable without modification on gaussian data as well as data corrupted by outliers. The detection of a single change-point is controlled even for small samples. In a multivariate context, a term is introduced to model the dependencies between the changes, assuming that if two components are connected, the events occurring in the first one tend to affect the second one instantaneously. Thanks to this flexible model, the segmentation is sensitive to common changes shared by several signals but also to isolated changes occurring in a single signal. The method is compared with other solutions of the literature, especially on real datasets of electrical household consumption and genomic measurements. These experiments enhance the interest of the model for the detection of change-points in independent, conditionally independent or fully connected signals. The synchronization of the change-points within the time series is finally exploited in order to estimate the relationships between the variables, with the Bayesian network formalism. By adapting the score function of a structure learning method, it is checked that the independency model that describes the system can be partly retrieved through the information given by the change-points, estimated by the Bernoulli Detector
Jebreen, Kamel. « Modèles graphiques pour la classification et les séries temporelles ». Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0248/document.
Texte intégralFirst, in this dissertation, we will show that Bayesian networks classifiers are very accurate models when compared to other classical machine learning methods. Discretising input variables often increase the performance of Bayesian networks classifiers, as does a feature selection procedure. Different types of Bayesian networks may be used for supervised classification. We combine such approaches together with feature selection and discretisation to show that such a combination gives rise to powerful classifiers. A large choice of data sets from the UCI machine learning repository are used in our experiments, and the application to Epilepsy type prediction based on PET scan data confirms the efficiency of our approach. Second, in this dissertation we also consider modelling interaction between a set of variables in the context of time series and high dimension. We suggest two approaches; the first is similar to the neighbourhood lasso where the lasso model is replaced by Support Vector Machines (SVMs); the second is a restricted Bayesian network for time series. We demonstrate the efficiency of our approaches simulations using linear and nonlinear data set and a mixture of both
Rahier, Thibaud. « Réseaux Bayésiens pour fusion de données statiques et temporelles ». Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAM083/document.
Texte intégralPrediction and inference on temporal data is very frequently performed using timeseries data alone. We believe that these tasks could benefit from leveraging the contextual metadata associated to timeseries - such as location, type, etc. Conversely, tasks involving prediction and inference on metadata could benefit from information held within timeseries. However, there exists no standard way of jointly modeling both timeseries data and descriptive metadata. Moreover, metadata frequently contains highly correlated or redundant information, and may contain errors and missing values.We first consider the problem of learning the inherent probabilistic graphical structure of metadata as a Bayesian Network. This has two main benefits: (i) once structured as a graphical model, metadata is easier to use in order to improve tasks on temporal data and (ii) the learned model enables inference tasks on metadata alone, such as missing data imputation. However, Bayesian network structure learning is a tremendous mathematical challenge, that involves a NP-Hard optimization problem. We present a tailor-made structure learning algorithm, inspired from novel theoretical results, that exploits (quasi)-determinist dependencies that are typically present in descriptive metadata. This algorithm is tested on numerous benchmark datasets and some industrial metadatasets containing deterministic relationships. In both cases it proved to be significantly faster than state of the art, and even found more performant structures on industrial data. Moreover, learned Bayesian networks are consistently sparser and therefore more readable.We then focus on designing a model that includes both static (meta)data and dynamic data. Taking inspiration from state of the art probabilistic graphical models for temporal data (Dynamic Bayesian Networks) and from our previously described approach for metadata modeling, we present a general methodology to jointly model metadata and temporal data as a hybrid static-dynamic Bayesian network. We propose two main algorithms associated to this representation: (i) a learning algorithm, which while being optimized for industrial data, is still generalizable to any task of static and dynamic data fusion, and (ii) an inference algorithm, enabling both usual tasks on temporal or static data alone, and tasks using the two types of data.%We then provide results on diverse cross-field applications such as forecasting, metadata replenishment from timeseries and alarms dependency analysis using data from some of Schneider Electric’s challenging use-cases.Finally, we discuss some of the notions introduced during the thesis, including ways to measure the generalization performance of a Bayesian network by a score inspired from the cross-validation procedure from supervised machine learning. We also propose various extensions to the algorithms and theoretical results presented in the previous chapters, and formulate some research perspectives
Kindermann, Lars. « Neuronale Netze zur Berechnung Iterativer Wurzeln und Fraktionaler Iterationen ». Doctoral thesis, Universitätsbibliothek Chemnitz, 2002. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200201544.
Texte intégralTagscherer, Michael. « Dynamische Neuronale Netzarchitektur für Kontinuierliches Lernen ». Doctoral thesis, Universitätsbibliothek Chemnitz, 2001. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200100725.
Texte intégralOne of the main requirements for an optimal industrial control system is the availability of a precise model of the process, e.g. for a steel rolling mill. If no model or no analytical description of such a process is available a sufficient model has to be derived from observations, i.e. system identification. While nonlinear function approximation is a well-known application for neural networks, the approximation of nonlinear functions that change over time poses many additional problems which have been in the focus of this research. The time-variance caused for example by aging or attrition requires a continuous adaptation to process changes throughout the life-time of the system, here referred to as continuous learning. Based on the analysis of different neural network approaches the novel incremental construction algorithm ICE for continuous learning tasks has been developed. One of the main advantages of the ICE-algorithm is that the number of RBF-neurons and the number of local models of the hybrid network have not to be determined in advance. This is an important feature for fast initial learning. The evolved network is automatically adapted to the time-variant target function. Another advantage of the ICE-algorithm is the ability to simultaneously learn the target function and a confidence value for the network output. Finally a special version of the ICE-algorithm with asymmetric receptive fields is introduced. Here similarities to fuzzy logic are intended. The goal is to automatically derive rules which describe the learned model of the unknown process. In general a neural network is a "black box". In contrast to that an ICE-network is more transparent
Kindermann, Lars. « Neuronale Netze zur Berechnung Iterativer Wurzeln und Fraktionaler Iterationen ». [S.l. : s.n.], 2001. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB10424174.
Texte intégralLIU, ZHEN-ZHONG, et 劉振中. « Adaptively controlling nonlinear continuous-time systems using neural networks ». Thesis, 1992. http://ndltd.ncl.edu.tw/handle/71989183416198206106.
Texte intégralChien, Chia-Yi. « Construction of Continuous-State Bayesian Networks Using D-Separation Property and Partial Correlations ». 2006. http://www.cetd.com.tw/ec/thesisdetail.aspx?etdun=U0001-2607200613535800.
Texte intégralChien, Chia-Yi, et 簡佳怡. « Construction of Continuous-State Bayesian Networks Using D-Separation Property and Partial Correlations ». Thesis, 2006. http://ndltd.ncl.edu.tw/handle/71625418714253282137.
Texte intégral國立臺灣大學
工業工程學研究所
94
The development of microarray technology is capable of generating a huge amount of gene expression data at once to help us analyze the whole genome mechanism. Many analysis methods have been developed and applied to analyze the microarray data, such as Clustering analysis, Factor analysis and Bayesian networks. Bayesian networks can better help biologists to understand the biological meanings behind the microarray data. In general, algorithms of Bayesian network construction can be divided into two categories: the search-and-score approach and the constraint-based approach. How to construct Bayesian networks rapidly and efficiently become a challenge to biotechnology researches. Before constructing a Bayesian network, the node ordering is the first difficulty and the actual node ordering is usually unknown. In this research, we develop a method to search for possible node orderings based on the d-separation property. There are three assigning procedures in the node ordering algorithm. With the proposed ordering procedures, we produce three possible node sequences. We also propose an algorithm of Bayesian network construction by using d-separation property and partial correlation to analyze variables with continuous states. Our algorithm is one of to the constraint-based approaches. Finally, we apply our algorithm to two real-word cases; one is the Saccharomyces cerevisiae cell cycle gene expression data collected by Spellman et al., and the other is the caspases data.
Walker, James. « Bayesian Inference and Model Selection for Partially-Observed, Continuous-Time, Stochastic Epidemic Models ». Thesis, 2019. http://hdl.handle.net/2440/124703.
Texte intégralThesis (Ph.D.) -- University of Adelaide, School of Mathematical Sciences, 2020
BARONE, ROSARIO. « MCMC methods for continuous time multi-state models and high dimensional copula models ». Doctoral thesis, 2020. http://hdl.handle.net/11573/1365737.
Texte intégral謝明佳. « A Bayesian Study on the Plant-Capture Approach for Population Size Estimation in Continuous Time ». Thesis, 2001. http://ndltd.ncl.edu.tw/handle/14406744993162482411.
Texte intégral