Articles de revues sur le sujet « Continuous Time Bayesian Network Classifier »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Continuous Time Bayesian Network Classifier ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Stella, F., and Y. Amer. "Continuous time Bayesian network classifiers." Journal of Biomedical Informatics 45, no. 6 (2012): 1108–19. http://dx.doi.org/10.1016/j.jbi.2012.07.002.
Texte intégralCodecasa, Daniele, and Fabio Stella. "Learning continuous time Bayesian network classifiers." International Journal of Approximate Reasoning 55, no. 8 (2014): 1728–46. http://dx.doi.org/10.1016/j.ijar.2014.05.005.
Texte intégralVilla, S., and F. Stella. "A continuous time Bayesian network classifier for intraday FX prediction." Quantitative Finance 14, no. 12 (2014): 2079–92. http://dx.doi.org/10.1080/14697688.2014.906811.
Texte intégralNaddaf-Sh, M.-Mahdi, SeyedSaeid Hosseini, Jing Zhang, Nicholas A. Brake, and Hassan Zargarzadeh. "Real-Time Road Crack Mapping Using an Optimized Convolutional Neural Network." Complexity 2019 (September 29, 2019): 1–17. http://dx.doi.org/10.1155/2019/2470735.
Texte intégralHemalatha, C. Sweetlin, and V. Vaidehi. "Associative Classification based Human Activity Recognition and Fall Detection using Accelerometer." International Journal of Intelligent Information Technologies 9, no. 3 (2013): 20–37. http://dx.doi.org/10.4018/jiit.2013070102.
Texte intégralProcházka, Vít K., Štěpánka Matuštíková, Tomáš Fürst, et al. "Bayesian Network Modelling As a New Tool in Predicting of the Early Progression of Disease in Follicular Lymphoma Patients." Blood 136, Supplement 1 (2020): 20–21. http://dx.doi.org/10.1182/blood-2020-139830.
Texte intégralLiu, Yunchuan, Amir Ghasemkhani, and Lei Yang. "Drifting Streaming Peaks-over-Threshold-Enhanced Self-Evolving Neural Networks for Short-Term Wind Farm Generation Forecast." Future Internet 15, no. 1 (2022): 17. http://dx.doi.org/10.3390/fi15010017.
Texte intégralLANSNER, ANDERS, and ANDERS HOLST. "A HIGHER ORDER BAYESIAN NEURAL NETWORK WITH SPIKING UNITS." International Journal of Neural Systems 07, no. 02 (1996): 115–28. http://dx.doi.org/10.1142/s0129065796000816.
Texte intégralDu, Rei-Jie, Shuang-Cheng Wang, Han-Xing Wang, and Cui-Ping Leng. "Optimization of Dynamic Naive Bayesian Network Classifier with Continuous Attributes." Advanced Science Letters 11, no. 1 (2012): 676–79. http://dx.doi.org/10.1166/asl.2012.2965.
Texte intégralWang, Shuangcheng, Siwen Zhang, Tao Wu, Yongrui Duan, Liang Zhou, and Hao Lei. "FMDBN: A first-order Markov dynamic Bayesian network classifier with continuous attributes." Knowledge-Based Systems 195 (May 2020): 105638. http://dx.doi.org/10.1016/j.knosys.2020.105638.
Texte intégralXu, J., and C. R. Shelton. "Intrusion Detection using Continuous Time Bayesian Networks." Journal of Artificial Intelligence Research 39 (December 23, 2010): 745–74. http://dx.doi.org/10.1613/jair.3050.
Texte intégralSturlaugson, Liessman, and John W. Sheppard. "Sensitivity Analysis of Continuous Time Bayesian Network Reliability Models." SIAM/ASA Journal on Uncertainty Quantification 3, no. 1 (2015): 346–69. http://dx.doi.org/10.1137/140953848.
Texte intégralCodecasa, Daniele, and Fabio Stella. "Classification and clustering with continuous time Bayesian network models." Journal of Intelligent Information Systems 45, no. 2 (2014): 187–220. http://dx.doi.org/10.1007/s10844-014-0345-0.
Texte intégralBhattacharjya, Debarun, Karthikeyan Shanmugam, Tian Gao, Nicholas Mattei, Kush Varshney, and Dharmashankar Subramanian. "Event-Driven Continuous Time Bayesian Networks." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (2020): 3259–66. http://dx.doi.org/10.1609/aaai.v34i04.5725.
Texte intégralOu, Guiliang, Yulin He, Philippe Fournier-Viger, and Joshua Zhexue Huang. "A Novel Mixed-Attribute Fusion-Based Naive Bayesian Classifier." Applied Sciences 12, no. 20 (2022): 10443. http://dx.doi.org/10.3390/app122010443.
Texte intégralGuo, Dai Fei, Jian Jun Hu, Ai Fen Sui, Guan Zhou Lin, and Tao Guo. "The Abnormal Mobile Malware Analysis Based on Behavior Categorization." Advanced Materials Research 765-767 (September 2013): 994–97. http://dx.doi.org/10.4028/www.scientific.net/amr.765-767.994.
Texte intégralLyu, Na, Jiaxin Zhou, Xuan Feng, Kefan Chen, and Wu Chen. "A Timeliness-Enhanced Traffic Identification Method in Airborne Network." Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 38, no. 2 (2020): 341–50. http://dx.doi.org/10.1051/jnwpu/20203820341.
Texte intégralBoudali, H., and J. B. Dugan. "A Continuous-Time Bayesian Network Reliability Modeling, and Analysis Framework." IEEE Transactions on Reliability 55, no. 1 (2006): 86–97. http://dx.doi.org/10.1109/tr.2005.859228.
Texte intégralGatti, E., D. Luciani, and F. Stella. "A continuous time Bayesian network model for cardiogenic heart failure." Flexible Services and Manufacturing Journal 24, no. 4 (2011): 496–515. http://dx.doi.org/10.1007/s10696-011-9131-2.
Texte intégralSong, Rongjia, Lei Huang, Weiping Cui, María Óskarsdóttir, and Jan Vanthienen. "Fraud Detection of Bulk Cargo Theft in Port Using Bayesian Network Models." Applied Sciences 10, no. 3 (2020): 1056. http://dx.doi.org/10.3390/app10031056.
Texte intégralLiu, Yang, Limin Wang, and Minghui Sun. "Efficient Heuristics for Structure Learning of k-Dependence Bayesian Classifier." Entropy 20, no. 12 (2018): 897. http://dx.doi.org/10.3390/e20120897.
Texte intégralLi, Dawei, Xiaojian Hu, Cheng-jie Jin, and Jun Zhou. "Learning to Detect Traffic Incidents from Data Based on Tree Augmented Naive Bayesian Classifiers." Discrete Dynamics in Nature and Society 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/8523495.
Texte intégralShelton, C. R., and G. Ciardo. "Tutorial on Structured Continuous-Time Markov Processes." Journal of Artificial Intelligence Research 51 (December 23, 2014): 725–78. http://dx.doi.org/10.1613/jair.4415.
Texte intégralBatenkov, Aleksandr, Kirill Batenkov, Andrey Bogachev, and Vladislav Mishin. "Mathematical Model of Object Classifier based on Bayesian Approach." Informatics and Automation 19, no. 6 (2020): 1166–97. http://dx.doi.org/10.15622/ia.2020.19.6.2.
Texte intégralMa, Rui, Long Han, and Hujun Geng. "Implementation and Error Analysis of MNIST Handwritten Dataset Classification Based on Bayesian Decision Classifier." Journal of Physics: Conference Series 2171, no. 1 (2022): 012049. http://dx.doi.org/10.1088/1742-6596/2171/1/012049.
Texte intégralChakraborty, Chinmay, Bharat Gupta, and Soumya K. Ghosh. "Chronic Wound Characterization using Bayesian Classifier under Telemedicine Framework." International Journal of E-Health and Medical Communications 7, no. 1 (2016): 76–93. http://dx.doi.org/10.4018/ijehmc.2016010105.
Texte intégralDaud, K., A. Farid Abidin, A. Paud Ismail, M. Daud A. Hasan, M. Affandi Shafie, and A. Ismail. "Evaluating windowing-based continuous S-transform with neural network classifier for detecting and classifying power quality disturbances." Indonesian Journal of Electrical Engineering and Computer Science 13, no. 3 (2019): 1136. http://dx.doi.org/10.11591/ijeecs.v13.i3.pp1136-1142.
Texte intégralAversano, Lerina, Mario Luca Bernardi, Marta Cimitile, and Riccardo Pecori. "Continuous authentication using deep neural networks ensemble on keystroke dynamics." PeerJ Computer Science 7 (May 11, 2021): e525. http://dx.doi.org/10.7717/peerj-cs.525.
Texte intégralBadr, Ahmed, Ahmed Yosri, Sonia Hassini, and Wael El-Dakhakhni. "Coupled Continuous-Time Markov Chain–Bayesian Network Model for Dam Failure Risk Prediction." Journal of Infrastructure Systems 27, no. 4 (2021): 04021041. http://dx.doi.org/10.1061/(asce)is.1943-555x.0000649.
Texte intégralAlonso-Tovar, José, Baidya Nath Saha, Jesús Romero-Hdz, and David Ortega. "Bayesian Network Classifier with Efficient Statistical Time-Series Features for the Classification of Robot Execution Failures." International Journal of Computer Science and Engineering 3, no. 11 (2016): 80–89. http://dx.doi.org/10.14445/23488387/ijcse-v3i11p114.
Texte intégralWu, Si, and Shun-ichi Amari. "Computing with Continuous Attractors: Stability and Online Aspects." Neural Computation 17, no. 10 (2005): 2215–39. http://dx.doi.org/10.1162/0899766054615626.
Texte intégralZhang, Guoyin, Chengyan Lin, and Yangkang Chen. "Convolutional neural networks for microseismic waveform classification and arrival picking." GEOPHYSICS 85, no. 4 (2020): WA227—WA240. http://dx.doi.org/10.1190/geo2019-0267.1.
Texte intégralDonnelly, Patrick J., and John W. Sheppard. "Classification of Musical Timbre Using Bayesian Networks." Computer Music Journal 37, no. 4 (2013): 70–86. http://dx.doi.org/10.1162/comj_a_00210.
Texte intégralHosoda, Shion, Tsukasa Fukunaga, and Michiaki Hamada. "Umibato: estimation of time-varying microbial interaction using continuous-time regression hidden Markov model." Bioinformatics 37, Supplement_1 (2021): i16—i24. http://dx.doi.org/10.1093/bioinformatics/btab287.
Texte intégralConte, Claudia, Giorgio de Alteriis, Rosario Schiano Lo Moriello, Domenico Accardo, and Giancarlo Rufino. "Drone Trajectory Segmentation for Real-Time and Adaptive Time-Of-Flight Prediction." Drones 5, no. 3 (2021): 62. http://dx.doi.org/10.3390/drones5030062.
Texte intégralHaghayegh, Shahab, Kun Hu, Katie Stone, Susan Redline, and Eva Schernhammer. "Automated Sleep Stages Classification Using Convolutional Neural Network From Raw and Time-Frequency Electroencephalogram Signals: Systematic Evaluation Study." Journal of Medical Internet Research 25 (February 10, 2023): e40211. http://dx.doi.org/10.2196/40211.
Texte intégralLee, Boon-Giin, and Wan-Young Chung. "MULTI-CLASSIFIER FOR HIGHLY RELIABLE DRIVER DROWSINESS DETECTION IN ANDROID PLATFORM." Biomedical Engineering: Applications, Basis and Communications 24, no. 02 (2012): 147–54. http://dx.doi.org/10.4015/s1016237212500159.
Texte intégralBeaudry, Eric, Froduald Kabanza, and Francois Michaud. "Planning for Concurrent Action Executions Under Action Duration Uncertainty Using Dynamically Generated Bayesian Networks." Proceedings of the International Conference on Automated Planning and Scheduling 20 (May 25, 2021): 10–17. http://dx.doi.org/10.1609/icaps.v20i1.13400.
Texte intégralMeenachi, Loganathan, and Srinivasan Ramakrishnan. "Random Global and Local Optimal Search Algorithm Based Subset Generation for Diagnosis of Cancer." Current Medical Imaging Formerly Current Medical Imaging Reviews 16, no. 3 (2020): 249–61. http://dx.doi.org/10.2174/1573405614666180720152838.
Texte intégralLiu, Jianyu, Linxue Zhao, and Yanlong Mao. "Bayesian regularized NAR neural network based short-term prediction method of water consumption." E3S Web of Conferences 118 (2019): 03024. http://dx.doi.org/10.1051/e3sconf/201911803024.
Texte intégralWei, Xiaohan, Yulai Zhang, and Cheng Wang. "Bayesian Network Structure Learning Method Based on Causal Direction Graph for Protein Signaling Networks." Entropy 24, no. 10 (2022): 1351. http://dx.doi.org/10.3390/e24101351.
Texte intégralWU, CHUNG-HSIEN, JHING-FA WANG, CHAUG-CHING HUANG, and JAU-YIEN LEE. "SPEAKER-INDEPENDENT RECOGNITION OF ISOLATED WORDS USING CONCATENATED NEURAL NETWORKS." International Journal of Pattern Recognition and Artificial Intelligence 05, no. 05 (1991): 693–714. http://dx.doi.org/10.1142/s0218001491000417.
Texte intégralPreen, Richard J., and Larry Bull. "Dynamical Genetic Programming in XCSF." Evolutionary Computation 21, no. 3 (2013): 361–87. http://dx.doi.org/10.1162/evco_a_00080.
Texte intégralAbdelwahab, Amira, and Mohamed Mostafa. "A Deep Neural Network Technique for Detecting Real-Time Drifted Twitter Spam." Applied Sciences 12, no. 13 (2022): 6407. http://dx.doi.org/10.3390/app12136407.
Texte intégralAcerbi, Enzo, Marcela Hortova-Kohoutkova, Tsokyi Choera, et al. "Modeling Approaches Reveal New Regulatory Networks in Aspergillus fumigatus Metabolism." Journal of Fungi 6, no. 3 (2020): 108. http://dx.doi.org/10.3390/jof6030108.
Texte intégralLi, Cailing, and Wenjun Li. "Automatic Classification Algorithm for Multisearch Data Association Rules in Wireless Networks." Wireless Communications and Mobile Computing 2021 (March 17, 2021): 1–9. http://dx.doi.org/10.1155/2021/5591387.
Texte intégralKolář, Jakub, Jan Sýkora, and Petr Hron. "Update-Based Machine Learning Classification of Hierarchical Symbols in a Slowly Varying Two-Way Relay Channel." Mathematics 8, no. 11 (2020): 2007. http://dx.doi.org/10.3390/math8112007.
Texte intégralLiu, Fucong, Tongzhou Zhang, Caixia Zheng, et al. "An Intelligent Multi-View Active Learning Method Based on a Double-Branch Network." Entropy 22, no. 8 (2020): 901. http://dx.doi.org/10.3390/e22080901.
Texte intégralRodziewicz, A., and M. Perzyk. "Application of Time-Series Analysis for Predicting Defects in Continuous Steel Casting Process." Archives of Foundry Engineering 16, no. 4 (2016): 125–30. http://dx.doi.org/10.1515/afe-2016-0096.
Texte intégralMoura, Márcio das Chagas, and Enrique López Droguett. "A continuous-time semi-markov bayesian belief network model for availability measure estimation of fault tolerant systems." Pesquisa Operacional 28, no. 2 (2008): 355–75. http://dx.doi.org/10.1590/s0101-74382008000200011.
Texte intégral