Littérature scientifique sur le sujet « Continuous Time Bayesian Network Classifier »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Continuous Time Bayesian Network Classifier ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Continuous Time Bayesian Network Classifier"
Stella, F., et Y. Amer. « Continuous time Bayesian network classifiers ». Journal of Biomedical Informatics 45, no 6 (décembre 2012) : 1108–19. http://dx.doi.org/10.1016/j.jbi.2012.07.002.
Texte intégralCodecasa, Daniele, et Fabio Stella. « Learning continuous time Bayesian network classifiers ». International Journal of Approximate Reasoning 55, no 8 (novembre 2014) : 1728–46. http://dx.doi.org/10.1016/j.ijar.2014.05.005.
Texte intégralVilla, S., et F. Stella. « A continuous time Bayesian network classifier for intraday FX prediction ». Quantitative Finance 14, no 12 (22 avril 2014) : 2079–92. http://dx.doi.org/10.1080/14697688.2014.906811.
Texte intégralNaddaf-Sh, M.-Mahdi, SeyedSaeid Hosseini, Jing Zhang, Nicholas A. Brake et Hassan Zargarzadeh. « Real-Time Road Crack Mapping Using an Optimized Convolutional Neural Network ». Complexity 2019 (29 septembre 2019) : 1–17. http://dx.doi.org/10.1155/2019/2470735.
Texte intégralHemalatha, C. Sweetlin, et V. Vaidehi. « Associative Classification based Human Activity Recognition and Fall Detection using Accelerometer ». International Journal of Intelligent Information Technologies 9, no 3 (juillet 2013) : 20–37. http://dx.doi.org/10.4018/jiit.2013070102.
Texte intégralProcházka, Vít K., Štěpánka Matuštíková, Tomáš Fürst, David Belada, Andrea Janíková, Kateřina Benešová, Heidi Mociková et al. « Bayesian Network Modelling As a New Tool in Predicting of the Early Progression of Disease in Follicular Lymphoma Patients ». Blood 136, Supplement 1 (5 novembre 2020) : 20–21. http://dx.doi.org/10.1182/blood-2020-139830.
Texte intégralLiu, Yunchuan, Amir Ghasemkhani et Lei Yang. « Drifting Streaming Peaks-over-Threshold-Enhanced Self-Evolving Neural Networks for Short-Term Wind Farm Generation Forecast ». Future Internet 15, no 1 (28 décembre 2022) : 17. http://dx.doi.org/10.3390/fi15010017.
Texte intégralLANSNER, ANDERS, et ANDERS HOLST. « A HIGHER ORDER BAYESIAN NEURAL NETWORK WITH SPIKING UNITS ». International Journal of Neural Systems 07, no 02 (mai 1996) : 115–28. http://dx.doi.org/10.1142/s0129065796000816.
Texte intégralDu, Rei-Jie, Shuang-Cheng Wang, Han-Xing Wang et Cui-Ping Leng. « Optimization of Dynamic Naive Bayesian Network Classifier with Continuous Attributes ». Advanced Science Letters 11, no 1 (30 mai 2012) : 676–79. http://dx.doi.org/10.1166/asl.2012.2965.
Texte intégralWang, Shuangcheng, Siwen Zhang, Tao Wu, Yongrui Duan, Liang Zhou et Hao Lei. « FMDBN : A first-order Markov dynamic Bayesian network classifier with continuous attributes ». Knowledge-Based Systems 195 (mai 2020) : 105638. http://dx.doi.org/10.1016/j.knosys.2020.105638.
Texte intégralThèses sur le sujet "Continuous Time Bayesian Network Classifier"
CODECASA, DANIELE. « Continuous time bayesian network classifiers ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/80691.
Texte intégralVILLA, SIMONE. « Continuous Time Bayesian Networks for Reasoning and Decision Making in Finance ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2015. http://hdl.handle.net/10281/69953.
Texte intégralThe analysis of the huge amount of financial data, made available by electronic markets, calls for new models and techniques to effectively extract knowledge to be exploited in an informed decision-making process. The aim of this thesis is to introduce probabilistic graphical models that can be used to reason and to perform actions in such a context. In the first part of this thesis, we present a framework which exploits Bayesian networks to perform portfolio analysis and optimization in a holistic way. It leverages on the compact and efficient representation of high dimensional probability distributions offered by Bayesian networks and their ability to perform evidential reasoning in order to optimize the portfolio according to different economic scenarios. In many cases, we would like to reason about the market change, i.e. we would like to express queries as probability distributions over time. Continuous time Bayesian networks can be used to address this issue. In the second part of the thesis, we show how it is possible to use this model to tackle real financial problems and we describe two notable extensions. The first one concerns classification, where we introduce an algorithm for learning these classifiers from Big Data, and we describe their straightforward application to the foreign exchange prediction problem in the high frequency domain. The second one is related to non-stationary domains, where we explicitly model the presence of statistical dependencies in multivariate time-series while allowing them to change over time. In the third part of the thesis, we describe the use of continuous time Bayesian networks within the Markov decision process framework, which provides a model for sequential decision-making under uncertainty. We introduce a method to control continuous time dynamic systems, based on this framework, that relies on additive and context-specific features to scale up to large state spaces. Finally, we show the performances of our method in a simplified, but meaningful trading domain.
Fan, Yu. « Continuous time Bayesian Network approximate inference and social network applications ». Diss., [Riverside, Calif.] : University of California, Riverside, 2009. http://proquest.umi.com/pqdweb?index=0&did=1957308751&SrchMode=2&sid=1&Fmt=2&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1268330625&clientId=48051.
Texte intégralIncludes abstract. Title from first page of PDF file (viewed March 8, 2010). Available via ProQuest Digital Dissertations. Includes bibliographical references (p. 130-133). Also issued in print.
ACERBI, ENZO. « Continuos time Bayesian networks for gene networks reconstruction ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/52709.
Texte intégralChapitres de livres sur le sujet "Continuous Time Bayesian Network Classifier"
Codecasa, Daniele, et Fabio Stella. « A Classification Based Scoring Function for Continuous Time Bayesian Network Classifiers ». Dans New Frontiers in Mining Complex Patterns, 35–50. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08407-7_3.
Texte intégralShi, Dongyu, et Jinyuan You. « Update Rules for Parameter Estimation in Continuous Time Bayesian Network ». Dans Lecture Notes in Computer Science, 140–49. Berlin, Heidelberg : Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-36668-3_17.
Texte intégralAcerbi, Enzo, et Fabio Stella. « Continuous Time Bayesian Networks for Gene Network Reconstruction : A Comparative Study on Time Course Data ». Dans Bioinformatics Research and Applications, 176–87. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08171-7_16.
Texte intégralWang, Jing, Jinglin Zhou et Xiaolu Chen. « Probabilistic Graphical Model for Continuous Variables ». Dans Intelligent Control and Learning Systems, 251–65. Singapore : Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8044-1_14.
Texte intégralFlores, M. Julia, José A. Gámez et Ana M. Martínez. « Supervised Classification with Bayesian Networks ». Dans Intelligent Data Analysis for Real-Life Applications, 72–102. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-4666-1806-0.ch005.
Texte intégralVeetil, Sanjai, et Qigang Gao. « Real-time Network Intrusion Detection Using Hadoop-Based Bayesian Classifier ». Dans Emerging Trends in ICT Security, 281–99. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-12-411474-6.00018-9.
Texte intégralChakraborty, Chinmay, Bharat Gupta et Soumya K. Ghosh. « Chronic Wound Characterization Using Bayesian Classifier under Telemedicine Framework ». Dans Medical Imaging, 741–60. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-0571-6.ch030.
Texte intégralChakraborty, Chinmay, Bharat Gupta et Soumya K. Ghosh. « Identification of Chronic Wound Status under Tele-Wound Network through Smartphone ». Dans E-Health and Telemedicine, 735–50. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-8756-1.ch037.
Texte intégralWong, Andrew K. C., Yang Wang et Gary C. L. Li. « Pattern Discovery as Event Association ». Dans Machine Learning, 1924–32. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-60960-818-7.ch804.
Texte intégralActes de conférences sur le sujet "Continuous Time Bayesian Network Classifier"
Villa, Simone, et Fabio Stella. « Learning Continuous Time Bayesian Networks in Non-stationary Domains ». Dans Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California : International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/804.
Texte intégralMatthews, Jordan, Timothy Klatt, Carolyn C. Seepersad, Michael Haberman et David Shahan. « Hierarchical Design of Composite Materials With Negative Stiffness Inclusions Using a Bayesian Network Classifier ». Dans ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-13128.
Texte intégralWiest, Tyler, Carolyn Conner Seepersad et Michael Haberman. « Design Space Exploration in Sparse, Mixed Continuous/Discrete Spaces via Synthetically Enhanced Classification ». Dans ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-85274.
Texte intégralChoi, YooJung, Adnan Darwiche et Guy Van den Broeck. « Optimal Feature Selection for Decision Robustness in Bayesian Networks ». Dans Twenty-Sixth International Joint Conference on Artificial Intelligence. California : International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/215.
Texte intégralSantoso, Ryan, Xupeng He, Marwa Alsinan, Hyung Kwak et Hussein Hoteit. « Bayesian Long-Short Term Memory for History Matching in Reservoir Simulations ». Dans SPE Reservoir Simulation Conference. SPE, 2021. http://dx.doi.org/10.2118/203976-ms.
Texte intégralNannapaneni, Saideep, Sankaran Mahadevan et Abhishek Dubey. « Real-Time Control of Cyber-Physical Manufacturing Process Under Uncertainty ». Dans ASME 2018 13th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/msec2018-6460.
Texte intégralHeidari, Hojat, et Abdolreza Ohadi. « Fault Detection in Gearbox With Non-Stationary Rotational Speed Using CWT Feature Extraction, PCA Reduction and ANN Classifier Methods ». Dans ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-71271.
Texte intégralZonzini, Federica, Francesca Romano, Antonio Carbone, Matteo Zauli et Luca De Marchi. « Enhancing Vibration-Based Structural Health Monitoring via Edge Computing : A Tiny Machine Learning Perspective ». Dans 2021 48th Annual Review of Progress in Quantitative Nondestructive Evaluation. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/qnde2021-75153.
Texte intégralAileni, Raluca maria. « HEALTHCARE PREDICTIVE MODELS BASED ON BIG DATA FUSION FROM BIOMEDICAL SENSORS ». Dans eLSE 2016. Carol I National Defence University Publishing House, 2016. http://dx.doi.org/10.12753/2066-026x-16-046.
Texte intégral