Articles de revues sur le sujet « Continuous pharmaceutical manufacturing »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Continuous pharmaceutical manufacturing.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Continuous pharmaceutical manufacturing ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Korhonen, Ossi. « Continuous Pharmaceutical Manufacturing ». Pharmaceutics 12, no 10 (23 septembre 2020) : 910. http://dx.doi.org/10.3390/pharmaceutics12100910.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Burcham, Christopher L., Alastair J. Florence et Martin D. Johnson. « Continuous Manufacturing in Pharmaceutical Process Development and Manufacturing ». Annual Review of Chemical and Biomolecular Engineering 9, no 1 (7 juin 2018) : 253–81. http://dx.doi.org/10.1146/annurev-chembioeng-060817-084355.

Texte intégral
Résumé :
The pharmaceutical industry has found new applications for the use of continuous processing for the manufacture of new therapies currently in development. The transformation has been encouraged by regulatory bodies as well as driven by cost reduction, decreased development cycles, access to new chemistries not practical in batch, improved safety, flexible manufacturing platforms, and improved product quality assurance. The transformation from batch to continuous manufacturing processing is the focus of this review. The review is limited to small, chemically synthesized organic molecules and encompasses the manufacture of both active pharmaceutical ingredients (APIs) and the subsequent drug product. Continuous drug product is currently used in approved processes. A few examples of production of APIs under current good manufacturing practice conditions using continuous processing steps have been published in the past five years, but they are lagging behind continuous drug product with respect to regulatory filings.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Hock, Sia Chong, Teh Kee Siang et Chan Lai Wah. « Continuous manufacturing versus batch manufacturing : benefits, opportunities and challenges for manufacturers and regulators ». Generics and Biosimilars Initiative Journal 10, no 1 (15 mars 2021) : 44–56. http://dx.doi.org/10.5639/gabij.2021.1001.004.

Texte intégral
Résumé :
Continuous manufacturing (CM) is the integration of a series of unit operations, processing materials continually to produce the final pharmaceutical product. In recent years, CM of pharmaceuticals has transformed from buzzword to reality, with at least eight currently approved drugs produced by CM. Propelled by various driving forces, manufacturers and regulators have recognized the benefits of CM and are awaiting the completion of the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) Q13, a harmonized guideline on CM that would be implemented by ICH members. Although significant progress is evident, the uptake of CM is still sluggish in the pharmaceutical industry due to many existing challenges that have hindered manufacturers from adopting this technology. The top two barriers that manufacturers currently face are regulatory uncertainties and high initial cost. These issues are crucial in unleashing the untapped potential of CM, which has significant implications on patients’ access to life-saving medicines, while mutually benefitting manufacturers and regulators. Despite numerous studies, there have been few existing publications that review current regulatory guidelines, highlight the latest challenges extensively and propose recommendations that are applicable for all pharmaceuticals and biopharmaceuticals. Therefore, this critical review aims to present the recent progress and existing challenges to provide greater clarity for manufacturers on CM. This review also proposes vital recommendations and future perspectives. These include regulatory harmonization, managing financial risks, hybrid processes, capacity building, a culture of quality and Pharma 4.0. While regulators and the industry work towards creating a harmonized guideline on CM, manufacturers should focus on overcoming existing cost, technical and cultural challenges to facilitate the implementation of CM.
Styles APA, Harvard, Vancouver, ISO, etc.
4

TAHARA, Kohei. « Spherical Crystallization for Pharmaceutical Continuous Manufacturing System ». Hosokawa Powder Technology Foundation ANNUAL REPORT 25 (2017) : 75–78. http://dx.doi.org/10.14356/hptf.15111.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

May, Scott A. « Flow chemistry, continuous processing, and continuous manufacturing : A pharmaceutical perspective ». Journal of Flow Chemistry 7, no 3–4 (septembre 2017) : 137–45. http://dx.doi.org/10.1556/1846.2017.00029.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Desai, Parind Mahendrakumar, Griet Van Vaerenbergh, Jim Holman, Celine Valeria Liew et Paul Wan Sia Heng. « Continuous manufacturing : the future in pharmaceutical solid dosage form manufacturing ». Pharmaceutical Bioprocessing 3, no 5 (septembre 2015) : 357–60. http://dx.doi.org/10.4155/pbp.15.19.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Myerson, Allan S., Markus Krumme, Moheb Nasr, Hayden Thomas et Richard D. Braatz. « Control Systems Engineering in Continuous Pharmaceutical Manufacturing May 20–21, 2014 Continuous Manufacturing Symposium ». Journal of Pharmaceutical Sciences 104, no 3 (mars 2015) : 832–39. http://dx.doi.org/10.1002/jps.24311.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Wahlich, John. « Review : Continuous Manufacturing of Small Molecule Solid Oral Dosage Forms ». Pharmaceutics 13, no 8 (22 août 2021) : 1311. http://dx.doi.org/10.3390/pharmaceutics13081311.

Texte intégral
Résumé :
Continuous manufacturing (CM) is defined as a process in which the input material(s) are continuously fed into and transformed, and the processed output materials are continuously removed from the system. CM can be considered as matching the FDA’s so-called ‘Desired State’ of pharmaceutical manufacturing in the twenty-first century as discussed in their 2004 publication on ‘Innovation and Continuous Improvement in Pharmaceutical Manufacturing’. Yet, focused attention on CM did not really start until 2014, and the first product manufactured by CM was only approved in 2015. This review describes some of the benefits and challenges of introducing a CM process with a particular focus on small molecule solid oral dosage forms. The review is a useful introduction for individuals wishing to learn more about CM.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Lee, Sau L., Thomas F. O’Connor, Xiaochuan Yang, Celia N. Cruz, Sharmista Chatterjee, Rapti D. Madurawe, Christine M. V. Moore, Lawrence X. Yu et Janet Woodcock. « Modernizing Pharmaceutical Manufacturing : from Batch to Continuous Production ». Journal of Pharmaceutical Innovation 10, no 3 (19 mars 2015) : 191–99. http://dx.doi.org/10.1007/s12247-015-9215-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Rehrl, Jakob, Julia Kruisz, Stephan Sacher, Johannes Khinast et Martin Horn. « Optimized continuous pharmaceutical manufacturing via model-predictive control ». International Journal of Pharmaceutics 510, no 1 (août 2016) : 100–115. http://dx.doi.org/10.1016/j.ijpharm.2016.06.024.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Horáková, Pavlína, et Kamila Kočí. « Continuous-Flow Chemistry and Photochemistry for Manufacturing of Active Pharmaceutical Ingredients ». Molecules 27, no 23 (4 décembre 2022) : 8536. http://dx.doi.org/10.3390/molecules27238536.

Texte intégral
Résumé :
An active pharmaceutical ingredient (API) is any substance in a pharmaceutical product that is biologically active. That means the specific molecular entity is capable of achieving a defined biological effect on the target. These ingredients need to meet very strict limits; chemical and optical purity are considered to be the most important ones. A continuous-flow synthetic methodology which utilizes a continuously flowing stream of reactive fluids can be easily combined with photochemistry, which works with the chemical effects of light. These methods can be useful tools to meet these strict limits. Both of these methods are unique and powerful tools for the preparation of natural products or active pharmaceutical ingredients and their precursors with high structural complexity under mild conditions. This review shows some main directions in the field of active pharmaceutical ingredients’ preparation using continuous-flow chemistry and photochemistry with numerous examples of industry and laboratory-scale applications.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Bostijn, N., J. Van Renterghem, W. Dhondt, C. Vervaet et T. De Beer. « A continuous manufacturing concept for a pharmaceutical oral suspension ». European Journal of Pharmaceutical Sciences 123 (octobre 2018) : 576–83. http://dx.doi.org/10.1016/j.ejps.2018.08.015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Sugiyama, Hirokazu, et Rainer Schmidt. « Business Process Model of Continuous Improvement in Pharmaceutical Manufacturing ». KAGAKU KOGAKU RONBUNSHU 40, no 3 (2014) : 201–10. http://dx.doi.org/10.1252/kakoronbunshu.40.201.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Diab, Samir, et Dimitrios I. Gerogiorgis. « Design Space Identification and Visualization for Continuous Pharmaceutical Manufacturing ». Pharmaceutics 12, no 3 (5 mars 2020) : 235. http://dx.doi.org/10.3390/pharmaceutics12030235.

Texte intégral
Résumé :
Progress in continuous flow chemistry over the past two decades has facilitated significant developments in the flow synthesis of a wide variety of Active Pharmaceutical Ingredients (APIs), the foundation of Continuous Pharmaceutical Manufacturing (CPM), which has gained interest for its potential to reduce material usage, energy and costs and the ability to access novel processing windows that would be otherwise hazardous if operated via traditional batch techniques. Design space investigation of manufacturing processes is a useful task in elucidating attainable regions of process performance and product quality attributes that can allow insight into process design and optimization prior to costly experimental campaigns and pilot plant studies. This study discusses recent demonstrations from the literature on design space investigation and visualization for continuous API production and highlights attainable regions of recoveries, material efficiencies, flowsheet complexity and cost components for upstream (reaction + separation) via modeling, simulation and nonlinear optimization, providing insight into optimal CPM operation.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Zhang, Ping, Nopphon Weeranoppanant, Dale A. Thomas, Kohei Tahara, Torsten Stelzer, Mary Grace Russell, Marcus O'Mahony et al. « Advanced Continuous Flow Platform for On-Demand Pharmaceutical Manufacturing ». Chemistry - A European Journal 24, no 11 (31 janvier 2018) : 2776–84. http://dx.doi.org/10.1002/chem.201706004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Yadav, Vikramaditya G., et Gregory Stephanopoulos. « Metabolic Engineering : The Ultimate Paradigm for Continuous Pharmaceutical Manufacturing ». ChemSusChem 7, no 7 (9 avril 2014) : 1847–53. http://dx.doi.org/10.1002/cssc.201301219.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Helal, Nada A., Ola Elnoweam, Heba Abdullah Eassa, Ahmed M. Amer, Mohamed Ashraf Eltokhy, Mohamed A. Helal, Heba A. Fayyaz et Mohamed Ismail Nounou. « Integrated continuous manufacturing in pharmaceutical industry : current evolutionary steps toward revolutionary future ». Pharmaceutical Patent Analyst 8, no 4 (juillet 2019) : 139–61. http://dx.doi.org/10.4155/ppa-2019-0011.

Texte intégral
Résumé :
Continuous manufacturing (CM) has the potential to provide pharmaceutical products with better quality, improved yield and with reduced cost and time. Moreover, ease of scale-up, small manufacturing footprint and on-line/in-line monitoring and control of the process are other merits for CM. Regulating authorities are supporting the adoption of CM by pharmaceutical manufacturers through issuing proper guidelines. However, implementation of this technology in pharmaceutical industry is encountered by a number of challenges regarding the process development and quality assurance. This article provides a background on the implementation of CM in pharmaceutical industry, literature survey of the most recent state-of-the-art technologies and critically discussing the encountered challenges and its future prospective in pharmaceutical industry.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Ouranidis, Andreas, Christina Davidopoulou, Reald-Konstantinos Tashi et Kyriakos Kachrimanis. « Pharma 4.0 Continuous mRNA Drug Products Manufacturing ». Pharmaceutics 13, no 9 (31 août 2021) : 1371. http://dx.doi.org/10.3390/pharmaceutics13091371.

Texte intégral
Résumé :
Continuous mRNA drugs manufacturing is perceived to nurture flow processes featuring quality by design, controlled automation, real time validation, robustness, and reproducibility, pertaining to regulatory harmonization. However, the actual adaptation of the latter remains elusive, hence batch-to-continuous transition would a priori necessitate holistic process understanding. In addition, the cost related to experimental, pilot manufacturing lines development and operations thereof renders such venture prohibitive. Systems-based Pharmaceutics 4.0 digital design enabling tools, i.e., converging mass and energy balance simulations, Monte-Carlo machine learning iterations, and spatial arrangement analysis were recruited herein to overcome the aforementioned barriers. The primary objective of this work is to hierarchically design the related bioprocesses, embedded in scalable devices, compatible with continuous operation. Our secondary objective is to harvest the obtained technological data and conduct resource commitment analysis. We herein demonstrate for first time the feasibility of the continuous, end-to-end production of sterile mRNA formulated into lipid nanocarriers, defining the equipment specifications and the desired operational space. Moreover, we find that the cell lysis modules and the linearization enzymes ascend as the principal resource-intensive model factors, accounting for 40% and 42% of the equipment and raw material, respectively. We calculate MSPD 1.30–1.45 €, demonstrating low margin lifecycle fluctuation.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Garcia, Fernando A., et Michael W. Vandiver. « Throughput Optimization of Continuous Biopharmaceutical Manufacturing Facilities ». PDA Journal of Pharmaceutical Science and Technology 71, no 3 (14 décembre 2016) : 189–205. http://dx.doi.org/10.5731/pdajpst.2016.006882.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Piñeiro, David Pérez, Anastasia Nikolakopoulou, Johannes Jäschke et Richard D. Braatz. « Self-Optimizing Control of a Continuous-Flow Pharmaceutical Manufacturing Plant ». IFAC-PapersOnLine 53, no 2 (2020) : 11601–6. http://dx.doi.org/10.1016/j.ifacol.2020.12.640.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Yang, Wenhui, Wuxi Qian, Zhihong Yuan et Bingzhen Chen. « Perspectives on the flexibility analysis for continuous pharmaceutical manufacturing processes ». Chinese Journal of Chemical Engineering 41 (janvier 2022) : 29–41. http://dx.doi.org/10.1016/j.cjche.2021.12.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Dilley, Garrett. « Guest Editorial : Continuous Manufacturing at Johnson Matthey For Pharmaceutical Applications ». Johnson Matthey Technology Review 63, no 3 (1 juillet 2019) : 148–49. http://dx.doi.org/10.1595/205651319x15579077595864.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Roggo, Yves, Morgane Jelsch, Philipp Heger, Simon Ensslin et Markus Krumme. « Deep learning for continuous manufacturing of pharmaceutical solid dosage form ». European Journal of Pharmaceutics and Biopharmaceutics 153 (août 2020) : 95–105. http://dx.doi.org/10.1016/j.ejpb.2020.06.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Jolliffe, Hikaru G., et Dimitrios I. Gerogiorgis. « Process modelling and simulation for continuous pharmaceutical manufacturing of ibuprofen ». Chemical Engineering Research and Design 97 (mai 2015) : 175–91. http://dx.doi.org/10.1016/j.cherd.2014.12.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Jolliffe, Hikaru G., et Dimitrios I. Gerogiorgis. « Process modelling and simulation for continuous pharmaceutical manufacturing of artemisinin ». Chemical Engineering Research and Design 112 (août 2016) : 310–25. http://dx.doi.org/10.1016/j.cherd.2016.02.017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Ierapetritou, Marianthi, Fernando Muzzio et Gintaras Reklaitis. « Perspectives on the continuous manufacturing of powder-based pharmaceutical processes ». AIChE Journal 62, no 6 (18 mars 2016) : 1846–62. http://dx.doi.org/10.1002/aic.15210.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Lee, Boung Wook, Kehua Yin, Kevin Splaine et Brian Roesch. « Thin-Film Evaporator Model for Continuous Active Pharmaceutical Ingredient Manufacturing ». Industrial & ; Engineering Chemistry Research 59, no 7 (17 janvier 2020) : 3252–60. http://dx.doi.org/10.1021/acs.iecr.9b03974.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Wong, Wee, Ewan Chee, Jiali Li et Xiaonan Wang. « Recurrent Neural Network-Based Model Predictive Control for Continuous Pharmaceutical Manufacturing ». Mathematics 6, no 11 (7 novembre 2018) : 242. http://dx.doi.org/10.3390/math6110242.

Texte intégral
Résumé :
The pharmaceutical industry has witnessed exponential growth in transforming operations towards continuous manufacturing to increase profitability, reduce waste and extend product ranges. Model predictive control (MPC) can be applied to enable this vision by providing superior regulation of critical quality attributes (CQAs). For MPC, obtaining a workable system model is of fundamental importance, especially if complex process dynamics and reaction kinetics are present. Whilst physics-based models are desirable, obtaining models that are effective and fit-for-purpose may not always be practical, and industries have often relied on data-driven approaches for system identification instead. In this work, we demonstrate the applicability of recurrent neural networks (RNNs) in MPC applications in continuous pharmaceutical manufacturing. RNNs were shown to be especially well-suited for modelling dynamical systems due to their mathematical structure, and their use in system identification has enabled satisfactory closed-loop performance for MPC of a complex reaction in a single continuous-stirred tank reactor (CSTR) for pharmaceutical manufacturing.
Styles APA, Harvard, Vancouver, ISO, etc.
29

McWilliams, J. Christopher, Ayman D. Allian, Suzanne M. Opalka, Scott A. May, Michel Journet et Timothy M. Braden. « The Evolving State of Continuous Processing in Pharmaceutical API Manufacturing : A Survey of Pharmaceutical Companies and Contract Manufacturing Organizations ». Organic Process Research & ; Development 22, no 9 (8 août 2018) : 1143–66. http://dx.doi.org/10.1021/acs.oprd.8b00160.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Takizawa, Bayan Teisho, Stephen Christopher Born et Salvatore Mascia. « Leveraging Integrated Continuous Manufacturing to Address Critical Issues in the U.S. Military ». Military Medicine 185, Supplement_1 (janvier 2020) : 656–62. http://dx.doi.org/10.1093/milmed/usz245.

Texte intégral
Résumé :
ABSTRACT There is a tremendous opportunity to modernize the pharmaceutical manufacturing industry—relinquishing outdated machines that have been used for decades, and replacing them with state-of-the-art equipment that reflect more contemporary advanced technologies. This article describes how the implementation of continuous manufacturing, replacing outdated batch systems, can positively impact our health care sector. Important benefits will include the creation of advanced pharmaceutical manufacturing jobs in the United States, the establishment of capabilities and capacity to quickly produce drugs critical to U.S. citizens, the reduction of health care costs through more efficient manufacturing, and access to better quality drugs through more sophisticated and reliable production processes. Furthermore, the application of continuous manufacturing will enable the U.S. Government, in partnership with pharmaceutical companies, to address current issues such as drug shortages, national emergencies (eg, natural disasters or chemical, biological, radiological, or nuclear threats), the Strategic National Stockpile (ie, improving response time and reducing maintenance costs), and the delivery of critical drugs to distant geographies (eg, forward military bases). The article also provides a detailed example of a critical aspect of continuous manufacturing: the ability to overcome technical challenges encountered by batch technologies.
Styles APA, Harvard, Vancouver, ISO, etc.
31

HAMMOND. « Process Analytical Technology Enabling Continuous Drug Product Manufacturing ». Scientia Pharmaceutica 78, no 3 (2010) : 549. http://dx.doi.org/10.3797/scipharm.cespt.8.l09.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

VANGENECHTEN. « The Potential of Continuous Processing in Secondary Manufacturing ». Scientia Pharmaceutica 78, no 3 (2010) : 562. http://dx.doi.org/10.3797/scipharm.cespt.8.lpes01.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Razavi, Sonia M., James Scicolone, Ronald D. Snee, Ashish Kumar, Johny Bertels, Philippe Cappuyns, Ivo Van Assche, Alberto M. Cuitiño et Fernando Muzzio. « Prediction of tablet weight variability in continuous manufacturing ». International Journal of Pharmaceutics 575 (février 2020) : 118727. http://dx.doi.org/10.1016/j.ijpharm.2019.118727.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Chavan, Rahul B., Rajesh Thipparaboina, Balvant Yadav et Nalini R. Shastri. « Continuous manufacturing of co-crystals : challenges and prospects ». Drug Delivery and Translational Research 8, no 6 (19 janvier 2018) : 1726–39. http://dx.doi.org/10.1007/s13346-018-0479-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Bostijn, N., J. Van Renterghem, B. Vanbillemont, W. Dhondt, C. Vervaet et T. De Beer. « Continuous manufacturing of a pharmaceutical cream : Investigating continuous powder dispersing and residence time distribution (RTD) ». European Journal of Pharmaceutical Sciences 132 (avril 2019) : 106–17. http://dx.doi.org/10.1016/j.ejps.2019.02.036.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Nasr, Moheb M., Markus Krumme, Yoshihiro Matsuda, Bernhardt L. Trout, Clive Badman, Salvatore Mascia, Charles L. Cooney et al. « Regulatory Perspectives on Continuous Pharmaceutical Manufacturing : Moving From Theory to Practice ». Journal of Pharmaceutical Sciences 106, no 11 (novembre 2017) : 3199–206. http://dx.doi.org/10.1016/j.xphs.2017.06.015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Mesbah, Ali, Joel A. Paulson, Richard Lakerveld et Richard D. Braatz. « Model Predictive Control of an Integrated Continuous Pharmaceutical Manufacturing Pilot Plant ». Organic Process Research & ; Development 21, no 6 (juin 2017) : 844–54. http://dx.doi.org/10.1021/acs.oprd.7b00058.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Liu, Jianfeng, Qinglin Su, Mariana Moreno, Carl Laird, Zoltan Nagy et Gintaras Reklaitis. « Robust state estimation of feeding–blending systems in continuous pharmaceutical manufacturing ». Chemical Engineering Research and Design 134 (juin 2018) : 140–53. http://dx.doi.org/10.1016/j.cherd.2018.03.017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Wang, Zilong, M. Sebastian Escotet-Espinoza et Marianthi Ierapetritou. « Process analysis and optimization of continuous pharmaceutical manufacturing using flowsheet models ». Computers & ; Chemical Engineering 107 (décembre 2017) : 77–91. http://dx.doi.org/10.1016/j.compchemeng.2017.02.030.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Su, Qinglin, Sudarshan Ganesh, Mariana Moreno, Yasasvi Bommireddy, Marcial Gonzalez, Gintaras V. Reklaitis et Zoltan K. Nagy. « A perspective on Quality-by-Control (QbC) in pharmaceutical continuous manufacturing ». Computers & ; Chemical Engineering 125 (juin 2019) : 216–31. http://dx.doi.org/10.1016/j.compchemeng.2019.03.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Sen, Maitraye, Amanda Rogers, Ravendra Singh, Anwesha Chaudhury, Joyce John, Marianthi G. Ierapetritou et Rohit Ramachandran. « Flowsheet optimization of an integrated continuous purification-processing pharmaceutical manufacturing operation ». Chemical Engineering Science 102 (octobre 2013) : 56–66. http://dx.doi.org/10.1016/j.ces.2013.07.035.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Boukouvala, Fani, et Marianthi G. Ierapetritou. « Surrogate-Based Optimization of Expensive Flowsheet Modeling for Continuous Pharmaceutical Manufacturing ». Journal of Pharmaceutical Innovation 8, no 2 (11 mai 2013) : 131–45. http://dx.doi.org/10.1007/s12247-013-9154-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Vargas, Jenny M., Sarah Nielsen, Vanessa Cárdenas, Anthony Gonzalez, Efrain Y. Aymat, Elvin Almodovar, Gustavo Classe, Yleana Colón, Eric Sanchez et Rodolfo J. Romañach. « Process analytical technology in continuous manufacturing of a commercial pharmaceutical product ». International Journal of Pharmaceutics 538, no 1-2 (mars 2018) : 167–78. http://dx.doi.org/10.1016/j.ijpharm.2018.01.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Yadav, Vikramaditya G., et Gregory Stephanopoulos. « ChemInform Abstract : Metabolic Engineering : The Ultimate Paradigm for Continuous Pharmaceutical Manufacturing ». ChemInform 45, no 43 (10 octobre 2014) : no. http://dx.doi.org/10.1002/chin.201443280.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Robertson, Karen, et Chick Wilson. « A novel open tubular continuous crystalliser : design and evaluation ». Acta Crystallographica Section A Foundations and Advances 70, a1 (5 août 2014) : C1182. http://dx.doi.org/10.1107/s2053273314088172.

Texte intégral
Résumé :
The ability to continuously manufacture products can be of huge benefit to industry as it can reduce waste and capital expenditure. Continuous crystallisation has received tepid interest for many years but has come to the fore recently as it holds the potential for a radical transformation in the way crystalline products are manufactured, leading to the development method being embraced by major industries such as pharmaceuticals. In addition to the financial benefits offered by continuous crystallisation over conventional batch methods, a higher level of control over the crystallisation process can also be achieved – allowing improved, more consistent particle attributes to be obtained in the crystallisation process. This control is in part a consequence of the smaller volumes involved in continuous crystallisation, which also has the advantage of reducing any hazards associated with the materials being processed. By using smaller volumes, the mixing efficacy is inherently increased which reduces any disparity between local environments, thereby allowing kinetics to dictate the nature of the products. The EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation (CMAC [1]) in the UK is a collaborative national initiative to further the knowledge base and understanding of all aspects relating to continuous crystallisation and its use in the manufacturing of crystalline particulate products. In this work we present the design and construction of a novel continuous crystalliser and its evaluation using various model systems such as calcium carbonate (polymorph control [2]) and Bourne reactions (mixing efficacy [3]). The crystalliser will then be used in the co-crystallisation of agrichemical and pharmaceutical compounds with co-formers in an effort to optimise the solid-state properties of these materials such as solubility. Various aspects of the evaluation of the design of the new crystalliser will be presented with reference to these trials, and assessed critically with respect to evolution of this design and potential implementation in manufacturing processes.
Styles APA, Harvard, Vancouver, ISO, etc.
46

DEL RIO ALVAREZ, LUIS ALBERTO, et NURIA SALAZAR SANCHEZ. « TECHNOLOGICAL CHALLENGES IN STERILE PRODUCTOS MANUFACTURING : IS PHARMACEUTICAL INDUSTRY TRAINED ? » DYNA 97, no 2 (1 mars 2022) : 135–39. http://dx.doi.org/10.6036/10288.

Texte intégral
Résumé :
Pharmaceutical industry, in addition to assuming the sanitary commitment, as has been demonstrated with the manufacturing of COVID-19 vaccines, must comply with the European Union Good Manufacturing Practices, for that reason it´s subject to a continuous updating demanded by the regulatory requirements. This commitment is even, if possible, greater for injectable drug’s manufacturing companies due to their intrinsic characteristics of safety for the patient, all this together with the maximum productivity objective. A review about the main challenges that the pharmaceutical industry must face for the manufacture of injectable products is carried out, that comprised the incorporation of new biological drugs and advanced therapies into the therapeutic arsenal, the increase in terms of the requirements in regulatory and inspection tasks by health authorities and the leading role that Contract Manufacturing Organisations are playing. On the other hand, issues such as the analytical methods used to evaluate product sterility validity, the impact of possible changes in the different processes and elements, especially in the case of aseptic manufacturing, and the evolution, with the implementation of Sterility and Quality by Design, of sterile products manufacturing science are discussed. Finally, the implementation of disruptive factors such as continuous manufacturing and robotization, which will have, with a high probability, a greater role in the not-so-distant future, is proposed. Key Words: Sterile Drugs, Inspection, Aseptic Manufacturing, Isolators, Good Manufacturing Practices, PAT, Pharmaceutical Industry
Styles APA, Harvard, Vancouver, ISO, etc.
47

Vervaet, Chris, et Jean Paul Remon. « Continuous granulation in the pharmaceutical industry ». Chemical Engineering Science 60, no 14 (juillet 2005) : 3949–57. http://dx.doi.org/10.1016/j.ces.2005.02.028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Adali, Merve B., Antonello A. Barresi, Gianluca Boccardo et Roberto Pisano. « Spray Freeze-Drying as a Solution to Continuous Manufacturing of Pharmaceutical Products in Bulk ». Processes 8, no 6 (19 juin 2020) : 709. http://dx.doi.org/10.3390/pr8060709.

Texte intégral
Résumé :
Pharmaceutical manufacturing is evolving from traditional batch processes to continuous ones. The new global competition focused on throughput and quality of drug products is certainly the driving force behind this transition which, thus, represents the new challenge of pharmaceutical manufacturing and hence of lyophilization as a downstream operation. In this direction, the present review deals with the most recent technologies, based on spray freeze-drying, that can achieve this objective. It provides a comprehensive overview of the physics behind this process and of the most recent equipment design.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Panikar, Savitha, Jingzhe Li, Varsha Rane, Sean Gillam, Gerardo Callegari, Bogdan Kurtyka, Sau Lee et Fernando Muzzio. « Integrating sensors for monitoring blend content in a pharmaceutical continuous manufacturing plant ». International Journal of Pharmaceutics 606 (septembre 2021) : 120085. http://dx.doi.org/10.1016/j.ijpharm.2020.120085.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Takeuchi, Hirofumi. « Recent Trends in Continuous Pharmaceutical Manufacturing and Expected Contribution of Powder Technology ». Journal of the Society of Powder Technology, Japan 58, no 5 (10 mai 2021) : 212–18. http://dx.doi.org/10.4164/sptj.58.212.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie