Littérature scientifique sur le sujet « Conjugated heat transfers »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Conjugated heat transfers ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Conjugated heat transfers"

1

Stiti, M., A. Labergue, F. Lemoine et G. Castanet. « Reconstruction of The Ice Front Within an Icing Droplet Using High Speed Laser Induced Fluorescence Imaging ». Proceedings of the International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics 20 (11 juillet 2022) : 1–10. http://dx.doi.org/10.55037/lxlaser.20th.157.

Texte intégral
Résumé :
An experimental setup is implemented in order to study the solidification of a drop impinging a subcooled substrate. One of the major problems relying the study of droplet solidification consist of the visualization of the solidification front within the droplet. Indeed, shadowgraphy measurement only allows the observation of the solidification front along the tri-junction liquid/solid/air. The use of the Laser Induced Fluorescence provides information on the evolution of the horizontal solidification front in a droplet over t ime. The images reconstruction of the solidification front is made by using two high-speed cameras (side view and top view). The measurements allow for the first time to observe the evolution of the solidification front geometry over t ime. The measurements, carried out on a duralumin substrate, were then compared with a 2D numerical model taking into account the heat transfers conjugated with the substrate.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Joneydi, Shariatzadeh. « Analytical solution of conjugate turbulent forced convection boundary layer flow over plates ». Thermal Science 20, no 5 (2016) : 1499–507. http://dx.doi.org/10.2298/tsci140115062j.

Texte intégral
Résumé :
A conjugate (coupled) forced convection heat transfer from a heated conducting plate under turbulent boundary layer flow is considered. A heated plate of finite thickness is cooled under turbulent forced convection boundary layer flow. Because the conduction and convection boundary layer flow is coupled (conjugated) in the problem, a semi-analytical solution based on Differential Transform Method (DTM) is presented for solving the non-linear integro-differential equation occurring in the problem. The main conclusion is that in the conjugate heat transfer case the temperature distribution of the plate is flatter than the one in the non-conjugate case. This feature is more pronounced under turbulent flow when compared with the laminar flow.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Chernova, A. A. « Validation of RANS Turbulence Models for the Conjugate Heat Exchange Problem ». Nelineinaya Dinamika 18, no 1 (2022) : 61–82. http://dx.doi.org/10.20537/nd220105.

Texte intégral
Résumé :
This paper addresses problems of mathematical modeling of heat exchange processes in the pre-nozzle volume of a solid propellant rocket engine with a charge with starlike cross-section and a recessed hinged nozzle. Methods of mathematical modeling are used to solve the quasi-stationary spatial conjugate problem of heat exchange. An analysis is made of the influence of RANS turbulence models on the flow structure in the flow channels of the engine and on the computed heat flow distributions over the surface of the recessed nozzle. Methods of mathematical modeling are used to solve the quasi-stationary spatial conjugate problem of heat exchange. Results of validation of RANS turbulence models are presented using well-known experimental data. A comparison of numerical and experimental distributions of the heat-transfer coefficient over the inlet surface of the recessed nozzle for the engine with a cylindrical channel charge is made for a primary choice of turbulence models providing a qualitative agreement between calculated and experimental data. By analyzing the results of numerical modeling of the conjugate problem of heat exchange in the combustion chamber of the solid propellant engine with a starlike channel, it is shown that the SST $k-\omega$ turbulence model provides local heat-transfer coefficient distributions that are particularly close to the experimental data.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Chiu, Wilson K. S., Cristy J. Richards et Yogesh Jaluria. « Experimental and Numerical Study of Conjugate Heat Transfer in a Horizontal Channel Heated From Below ». Journal of Heat Transfer 123, no 4 (1 février 2001) : 688–97. http://dx.doi.org/10.1115/1.1372316.

Texte intégral
Résumé :
Conjugate heat transfer has significant relevance to a number of thermal systems and techniques which demand stringent temperature control, such as electronic cooling and chemical vapor deposition. A detailed experimental and numerical study is carried out to investigate conjugate heat transfer in a common configuration consisting of a horizontal channel with a heated section. Experimental data obtained from this study provides physical insight into conjugate heat transfer effects and facilitates validation of numerical conjugate heat transfer models. The basic characteristics of the flow and the associated thermal transport are studied. The numerical model is used to carry out a parametric study of operating conditions and design variables, thus allowing for the characterization of the conjugate heat transfer effects. It is found that the numerically predicted flow field and heat transfer results validate well to experimental observations. Conjugate heat transfer is shown to significantly affect the temperature level and uniformity at the heated section’s surface, channel walls and the gas phase, thus impacting the rate of heat transfer. This study provides guidelines and fundamental insight into temperature control during the combined modes of heat transfer, with implications to various thermal manufacturing methods.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Olek, Shmuel. « MULTIREGION CONJUGATE HEAT TRANSFER ». Hybrid Methods in Engineering 1, no 2 (1999) : 19. http://dx.doi.org/10.1615/hybmetheng.v1.i2.30.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Yang, Jian, Yue Zhang, Mingxin Gao et Hua Song. « Effects of non-isothermal oxidation on transient conjugate heat transfer of the cryo-supersonic air-quenching ». Thermal Science, no 00 (2021) : 147. http://dx.doi.org/10.2298/tsci201111147y.

Texte intégral
Résumé :
In this paper, the effects of non-isothermal oxidation on transient conjugate heat transfer of the cryo-supersonic air-quenching are investigated based on a double-layered oxidation kinetics model, while a unified conjugate heat transfer formula is developed to synthetically consider the near-wall turbulence, non-isothermal oxidation, and surface radiation. The comparison between numerical and experimental results are also presented to check the validity of the developed model. The results indicate that the film growth has some degree of inhibition to the conjugate heat transfer, in particular, the stagnation temperature increases linearly by about 5 K per 100 ?m increase in film thickness, and the effective conjugate heat transfer coefficient in the stagnation region decreases linearly by about 55 Wm-2K-1 per 100 ?m increase in film thickness. Moreover, the oxide film would have little impact on transient conjugate heat transfer when the near-wall velocity is higher due to the effect of viscous dissipation.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Elmarghany, Mohamed, Mohamed Mansour, Ahmed Sultan et Mohamed Sabry. « Modeling of Conjugate Heat Transfer ». Bulletin of the Faculty of Engineering. Mansoura University 41, no 1 (30 juin 2020) : 16–23. http://dx.doi.org/10.21608/bfemu.2020.99354.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Bohn, Dieter, Jing Ren et Karsten Kusterer. « Systematic Investigation on Conjugate Heat Transfer Rates of Film Cooling Configurations ». International Journal of Rotating Machinery 2005, no 3 (2005) : 211–20. http://dx.doi.org/10.1155/ijrm.2005.211.

Texte intégral
Résumé :
For the determination of the film-cooling heat transfer, the design of a turbine blade relies on the conventional determination of the adiabatic film-cooling effectiveness and heat transfer conditions for test configurations. Thus, additional influences by the interaction of fluid flow and heat transfer and influences by additional convective heat transfer cannot be taken into account with sufficient accuracy. Within this paper, calculations of a film-cooled duct wall and a film-cooled real blade with application of the adiabatic and a conjugate heat transfer condition have been performed for different configurations. It can be shown that the application of the conjugate calculation method comprises the influence of heat transfer within the cooling film. The local heat transfer rate varies significantly depending on the local position.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Korotkov, Aleksey, Andrey Kozelkov, Andrey Kurkin, Robert Giniyatullin et Sergey Lashkin. « Numerical Simulation of the Conjugate Heat Transfer of a “Fluid–Solid Body” System on an Unmatched Grid Interface ». Fluids 8, no 10 (27 septembre 2023) : 266. http://dx.doi.org/10.3390/fluids8100266.

Texte intégral
Résumé :
Recently, when modeling transient problems of conjugate heat transfer, the independent construction of grid models for fluid and solid subdomains is increasingly being used. Such grid models, as a rule, are unmatched and require the development of special grid interfaces that match the heat fluxes at the interface. Currently, the most common sequential approach to modeling problems of conjugate heat transfer requires the iterative matching of boundary conditions, which can significantly slow down the process of the convergence of the solution in the case of modeling transient problems with fast processes. The present study is devoted to the development of a direct method for solving conjugate heat transfer problems on grid models consisting of inconsistent grid fragments on adjacent boundaries in which, in the general case, the number and location of nodes do not coincide. A conservative method for the discretization of the heat transfer equation by the direct method in the region of inconsistent interface boundaries between liquid and solid bodies is proposed. The proposed method for matching heat fluxes at mismatched boundaries is based on the principle of forming matched virtual boundaries, proposed in the GGI (General Grid Interface) method. A description of a numerical scheme is presented, which takes into account the different scales of cells and the sharply different thermophysical properties at the interface between liquid and solid media. An algorithm for constructing a conjugate matrix, the form of matrix coefficients responsible for conjugate heat transfer, and methods for calculating them are described. The operability of the presented method is demonstrated by the example of calculating conjugate heat transfer problems, the grid models of which consist of inconsistent grid fragments. The use of the direct conjugation method makes it possible to effectively solve both stationary and non-stationary problems using inconsistent meshes, without the need to modify them in the conjugation region within a single CFD solver.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Boyd, Ronald D., et Aaron M. May. « Conjugate Heat Transfer High-Heat-Flux Amplification Simulation ». Fusion Science and Technology 57, no 2 (février 2010) : 129–41. http://dx.doi.org/10.13182/fst10-a9367.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Conjugated heat transfers"

1

Rudkiewicz, Martin. « Analyse de la stabilité d'un échangeur générateur de vapeur à plaques ». Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSEP016.

Texte intégral
Résumé :
Dans un contexte de réduction des Gaz à Effet de Serre, une attention croissante est portée sur les sources de production d'énergie électrique décarbonée. Pour répondre à cette demande des projets de réacteurs nucléaires de petite taille, les Small Modular Reactor sont en phase de développement, à l’instar du projet NUWARD et de son réacteur à eau pressurisé de 170MWe. Cette technologie se distingue par sa modularité et le design très compact de ses générateurs de vapeur (GV) en comparaison des GV usuels. Le fluide secondaire est, en outre, vaporisé en une unique passe dans des canaux de taille millimétrique. Ces GV sont susceptibles d'être le siège d'instabilités thermohydrauliques diphasiques statiques (Ledinegg) ou dynamiques (onde de densité, ...). Ces instabilités modifient les niveaux de températures, débits et pressions, capables d’impacter l'efficacité, la durée de vie, voire l'intégrité des GV. Elles justifient ainsi une bonne compréhension et modélisation des conditions d’apparition de ces instabilités. Cette thèse analyse l'instabilité de Ledinegg dans les conditions de fonctionnement des GV compacts à plaques. Un modèle simplifié d'évaporation en convection forcée en domaine confiné est proposé et exploré. Considérant que les interfaces sont dominées par la capillarité et localisées par les gradients longitudinaux de température, ce modèle décrit le couplage thermique se produisant dans le cas d’un front de vaporisation, plan, d'épaisseur infinitésimale, séparant un domaine liquide d'un domaine vapeur. Les champs de température sont résolus à l'aide de la méthode des modes de Graetz généralisés, spécifiquement adaptée au modèle d'évaporation choisi. La décomposition en modes de Graetz généralisés résout semi-analytiquement des problèmes tridimensionnels de convection-diffusion permettant d'analyser finement les échanges convectifs conjugués. Dans le premier chapitre cette approche est utilisée pour étudier les transferts thermiques dans les boucles monophasiques en circulation naturelle. Une analyse numérique a permis d'établir une nouvelle loi d’échelle universelle reliant les nombres de Grashof et Reynolds, confirmée par une analyse asymptotique des couches limites pariétales. Cette loi a été confrontée avec succès aux corrélations empiriques existantes et à des jeux de données expérimentales. L'étude a mis en évidence le pilotage des transferts thermiques par la nature des conditions aux limites, les couches limites et le rapport des conductivités thermiques fluide/solide. Dans le second chapitre, la méthode des modes de Graetz généralisés est étendue à la résolution des champs de température avec un front d’évaporation permettant de déterminer le positionnement de celui-ci. Cette méthode est ensuite appliquée à un mono-canal chauffé uniformément et un échangeur co-courant. L’étude de la vaporisation dans un micro-canal à flux imposé a permis d’établir une loi linéaire entre position du front et nombre de Péclet. Les résultats numériques sont cohérents avec l’analyse analytique du bilan d’énergie et les données expérimentales de la littérature, à des débits et puissances de chauffe modérés. La loi d'évolution du front d'évaporation associée à un modèle de pertes de charge ont mené aux les contours des zones instables pour un micro-canal chauffé isolé et/ou en réseau ont été tracés et caractérisés. Dans le cas de l'échangeur co-courant, la majorité des études de stabilité considère des canaux à flux thermique imposé et thermiquement isolés. Or les transferts conjugués dans un échangeur s’écartent a priori, par nature, des échanges à flux imposé. Le modèle d’évaporation confiné prédit ainsi une relation logarithmique entre position du front et Péclet d'entrée. Les dépendances de cette relation aux propriétés du fluide et de la paroi, des débits du circuit primaire ont été étudiées et permis d’établir des critères de stabilité pour un échangeur seul et/ou en réseau, représentatifs des GV considérés
In the context of greenhouse gases reduction, an increasing attention is dedicated to carbon–free power plants solutions. To answer to this growing demand, tiny nuclear reactors or Small Modular Reactors (SMR), are being developed such as the 170Mwe Pressurized Water Reactor within the NUWARD project. This technology is downscaled, modular, with a very compact Steam Generators (SG) design in comparison to current recirculating SG. Moreover, the secondary fluid is vaporized through one unique passage in millimetric channels. However, such devices potentially include static (Ledinegg) and dynamic (density wave oscillations, …) two-phase flow instabilities. These instabilities can alter the SG’s efficiency, lifetime, and even integrity from modifying the temperature, mass flow and pressure levels. Consequently, it justifies a more precise analysis and understanding of the instability’s mechanism. In this PhD, a thorough study of the Ledinegg instability and the flow maldistribution phenomenon is carried out in the compact plates SG’s operating conditions. In a capillary dominated regime we consider a localized, infinitesimally thin interfacial front plunged into a forced longitudinal temperature gradient whereby vaporization arises leading to successive liquid-gas phases distribution within the channel. Whereas the liquid and vapor velocity profiles are provided by the Poiseuille’s law, the temperature fields in the solid and the fluid are obtained using the generalized Graetz modes method, specifically adapted to the considered vaporization model. The generalized Graetz modes decomposition permits a semi-analytical solution of the 3D convection-diffusion problems provided that the velocity field, domain’s section and Peclet’s number are longitudinally invariant along the flow direction. In the first chapter, this methodology is used to analyse heat transfers in single-phase natural convection circulation loop. A new universal scaling law for the relation between the Grashof and the Reynolds numbers is obtained, this is confirmed by an asymptotic analysis and direct numerical simulations and is successfully compared with experimental data sets. This analysis has highlighted the influence of boundary conditions, boundary layers, and fluid to solid thermal conductivity ratio in the heat transfer control. In the second chapter, the generalized Graetz modes method is extended to solve the temperature fields as well as the two-phase interface position within the vaporization model. This methodology is applied to two configurations: a uniformly heated single channel and a co-current heat exchanger. The vaporization’s numerical computation with imposed heat flux in a microchannel depicts the proportionality between the front’s position and the liquid Peclet’s number. The results are consistent with the theoretical energy balance analysis as well as with experimental data obtained in the literature for moderated mass flows and heating powers. Using the resulting interface’s position law into a pressure drops model, the boundaries of the stability areas in a single heated microchannel and many parallel channels have been computed and analysed. In the case of the co-current heat exchanger, the state-of-the-art remains spotty because most of stability studies deals with imposed heat flux and thermally insulated channels, not relevant for conjugated heat transfers in a heat exchanger which deviate from such simplified assumptions. Our confined vaporization model predicts a logarithmic dependence between the two-phase interface’s position and the secondary inlet Peclet’s number. The influence of the fluid properties, primary mass flow and the wall thermal conductivity on this law has been studied and allowed to specify the stability criteria for a single heat exchanger and a network composed of parallel heat exchangers, closer to the compact plates’ SG
Styles APA, Harvard, Vancouver, ISO, etc.
2

Jin, Ze. « Conjugated heat transfer in crossflow boiling ». Thesis, University of Ottawa (Canada), 1989. http://hdl.handle.net/10393/5803.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Macbeth, Tyler James. « Conjugate Heat Transfer and Average Versus Variable Heat Transfer Coefficients ». BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/5801.

Texte intégral
Résumé :
An average heat transfer coefficient, h_bar, is often used to solve heat transfer problems. It should be understood that this is an approximation and may provide inaccurate results, especially when the temperature field is of interest. The proper method to solve heat transfer problems is with a conjugate approach. However, there seems to be a lack of clear explanations of conjugate heat transfer in literature. The objective of this work is to provide a clear explanation of conjugate heat transfer and to determine the discrepancy in the temperature field when the interface boundary condition is approximated using h_bar compared to a local, or variable, heat transfer coefficient, h(x). Simple one-dimensional problems are presented and solved analytically using both h(x) and h_bar. Due to the one-dimensional assumption, h(x) appears in the governing equation for which the common methods to solve the differential equations with an average coefficient are no longer valid. Two methods, the integral equation and generalized Bessel methods are presented to handle the variable coefficient. The generalized Bessel method has previously only been used with homogeneous governing equations. This work extends the use of the generalized Bessel method to non-homogeneous problems by developing a relation for the Wronskian of the general solution to the generalized Bessel equation. The solution methods are applied to three problems: an external flow past a flat plate, a conjugate interface between two solids and a conjugate interface between a fluid and a solid. The main parameter that is varied is a combination of the Biot number and a geometric aspect ratio, A_1^2 = Bi*L^2/d_1^2. The Biot number is assumed small since the problems are one-dimensional and thus variation in A_1^2 is mostly due to a change in the aspect ratio. A large A_1^2 represents a long and thin solid whereas a small A_1^2 represents a short and thick solid. It is found that a larger A_1^2 leads to less problem conjugation. This means that use of h_bar has a lesser effect on the temperature field for a long and thin solid. Also, use of ¯ over h(x) tends to generally under predict the solid temperature. In addition is was found that A_2^2, the A^2 value for the second subdomain, tends to have more effect on the shape of the temperature profile of solid 1 and A_1^2 has a greater effect on the magnitude of the difference in temperature profiles between the use of h(x) and h_bar. In general increasing the A^2 values reduced conjugation.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Maffulli, Roberto. « Conjugate heat transfer in high pressure turbines ». Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:6044f198-77ae-43e2-99af-cea4960e9407.

Texte intégral
Résumé :
In the present thesis the link between aerodynamics and heat transfer in high pressure turbines is investigated through steady numerical calculations. The investigations include the effect of wall temperature on the Heat Transfer coefficient (HTC), aiming to understand whether the conventional assumption of HTC being invariant with the thermal boundary condition does hold in a typical compressible flow, where the aerodynamic and thermal fields are strongly coupled. A novel non-linear three point method is proposed to scale wall heat transfer accounting for the dependence of HTC on wall temperature and local flow history. The effect of wall boundary condition on external aerodynamics and heat transfer calls for the need of Conjugate Heat Transfer (CHT) methods as design tools. For this reason CHT capabilities have been developed and integrated in Rolls-Royce Hydra CFD solver. The implemented CHT solver is fully-coupled, allowing for simultaneous solution of the solid and fluid domains. The implemented CHT coupling has been shown to be numerically stable with a good convergence rate for all cases tested. The implemented code has been successfully validated against both experimental, analytical and numerical data. Conjugate analysis of a double-wall trailing edge cooling design has been performed under matched external Biot conditions. Aim of the investigation has been to quantify the effect of CHT on the cooling discharge characteristics and external aerodynamics in a cooling configuration where coolant and external flow are separated by a lower thermal resistance than in a traditional internal cooling configuration. Detailed CHT results for this case are presented and discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Gardner, David Alan. « Numerical analysis of conjugate heat transfer from heat exchange surfaces ». Thesis, University of Leeds, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329229.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Salazar, Santiago. « Conjugate heat transfer on a gas turbine blade ». Master's thesis, University of Central Florida, 2010. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4546.

Texte intégral
Résumé :
Clearances between gas turbine casings and rotating blades is of quite importance on turbo machines since a significant loss of efficiency can occur if the clearances are not predicted accordingly. The radial thermal growths of the blade may be over or under predicted if poor assumptions are made on calculating the metal temperatures of the surfaces exposed to the fluid. The external surface of the blade is exposed to hot gas temperatures and it is internally cooled with air coming from the compressor. This cold air enters the radial channels at the root of the blade and then exists at the tip. To obtain close to realistic metal temperatures on the blade, the Conjugate Heat Transfer (CHT) approach would be utilized in this research. The radial thermal growth of the blade would be then compared to the initial guess. This work focuses on the interaction between the external boundary conditions obtained from the commercial Computational Fluid Dynamics software package CFX, the internal boundary conditions along the channels from a 1D flow solver proprietary to Siemens Energy, and the 3D metal temperatures and deformation of the blade predicted using the commercial Solid Mechanics software package ANSYS. An iterative technique to solve CHT problems is demonstrated and discussed. The results of this work help to highlight the importance of CHT in predicting metal temperatures and the implications it has in other aspect of the gas turbine design such as the tip clearances.
ID: 029049805; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (M.S.M.S.E.)--University of Central Florida, 2010.; Includes bibliographical references (p. 44-46).
M.S.M.S.E.
Masters
Department of Mechanical, Materials and Aerospace Engineering
Engineering and Computer Science
Styles APA, Harvard, Vancouver, ISO, etc.
7

Subramaniam, Vignaesh. « Topology Optimization of Conjugated Heat Transfer Devices : Experimental and Numerical investigation ». Thesis, Ecole nationale supérieure Mines-Télécom Lille Douai, 2018. http://www.theses.fr/2018MTLD0013/document.

Texte intégral
Résumé :
Concevoir des dispositifs thermiques plus compacts, nécessitant moins de masse de matière, produisant moins de pertes de charge et présentant un rendement thermique accru représente un enjeu clé pour des performances améliorées à un coût moindre. La présente thèse étudie le potentiel et la validité de l’optimisation topologique en tant qu’outil CFD viable permettant de générer des designs thermiques optimaux par rapport aux approches conventionnelles telles que l’optimisation de forme et paramétrique. La première partie de la thèse présente une étude expérimentale de structures bi matériaux arborescentes optimales obtenues par optimisation topologique. Le problème mathématique d’optimisation topologique est formulé et implémenté dans OpenFOAM®. Il est appliqué au problème d’optimisation de la conduction thermique dans une configuration de type volume-vers-point. Des mesures thermiques expérimentales sont effectuées sur les structures optimisées, en utilisant la thermographie infrarouge afin de quantifier leurs performances de transfert de chaleur et ainsi validé les performances des structures optimales déterminées par le code d’optimisation topologique développé. La deuxième partie de la thèse présente une technique bi-objectif innovante d’optimisation topologique des systèmes de transferts de chaleur conjugués (CHT, Conjugate Heat Transfer) en régimes d’écoulement laminaires. Pour cela, le problème est développé mathématiquement et implémenté dans le solveur OpenFOAM® basé sur une méthode directe par volumes finis. La fonction objectif est formulée par la pondération linéaire de deux fonctions objectifs, l’une pour la réduction de la perte de charge et l’autre pour l’augmentation du transfert de chaleur. Ceci représente une cible très difficile du point de vue numérique en raison de la concurrence entre les deux objectifs (minimisation de la perte de charge et maximisation de la puissance thermique récupérable). Des designs non intuitifs, mais optimaux au sens de Pareto, ont été obtenus, analysés, discutés et justifiés à l’aide de diverses méthodes d’analyses numériques globale et locale. De plus, une configuration identique à une optimisation par une méthode Lattice Boltzmann issue de la bibliographie a été optimisée en utilisant le solveur OpenFOAM® développé. L’objectif, en complément de la comparaison des solutions optimales, est également d’initier un cas de référence pour les futures études dans ce domaine de recherche et d’innovation de façon à pouvoir pleinement comparer les solutions optimales obtenues par différences méthodes et différents solveurs. Enfin, les différents points expérimentaux et numériques mis en lumière et illustrés dans cette thèse démontrent l’importance de la méthodologie et potentiel très important de l’optimisation topologique pour la conception de systèmes thermiques industriels plus performants
Designing thermal devices that are more compact with less mass, less frictional losses and increased thermal efficiency is a key requirement for enhanced performances at a lower cost. The present PhD thesis investigates the potential and validity of topology optimization numerical method as a viable CFD tool to generate optimal thermal designs as compared to conventional approaches like shape and parametric optimization. The first part of the thesis presents an experimental investigation of topology optimized tree-like structures made of two materials. The topolgy optimization mathematical problem is formulated and implemented in OpenFOAM®. It is applied to the topolgy optimization problem of volume-to-point heat removal. Experimental thermal measurements are carried out, on the optimal structures, using infrared thermography in order to quantify their heat transfer performances and thus validate the performances of the optimal structures determined by the developed topology optimization code. The second part of the thesis presents an innovative bi-objective optimization technique for topology optimization of Conjugate Heat Transfer (CHT) systems under laminar flow regimes. For that purpose, an inequality constrained bi-objective topology optimization problem is developed mathematically and implemented inside the Finite Volume based OpenFOAM® solver. The objective function is formulated by linear combination of two objective functions for pressure drop reduction and heat transfer enhancement which is numerically a very challenging task due to a competition between the two objectives (minimization of pressure drop and maximization of recoverable thermal power). Non-intuitive Pareto-optimal designs were obtained, analyzed, discussed and justified with the help of various global and local numerical analysis methods. Additionally, a recent Lattice Boltzmann topology optimization problem form the literature was solved using the developed OpenFOAM® solver. The objective, in addition to the comparison of the optimal solutions, is also to initiate a case of reference for future studies in this field of research and innovation so as to be able to fully compare the optimal solutions obtained by different and different methods. solvers. Finally, the various experimental and numerical findings highlighted and illustrated in this PhD thesis, demonstrate the importance of the methodology and immense potential behind topology optimization method for designing efficient industrial thermal systems
Styles APA, Harvard, Vancouver, ISO, etc.
8

Webster, Robert Samuel. « A numerical study of the conjugate conduction-convection heat transfer problem ». Diss., Mississippi State : Mississippi State University, 2001. http://library.msstate.edu/etd/show.asp?etd=etd-04102001-144805.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Mathie, Richard. « Unsteady and conjugate heat transfer in convective-conductive systems ». Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/10951.

Texte intégral
Résumé :
Unsteady (time-varying) heat transfer is an important transport phenomenon that is found in many engineering and industrial applications. In such systems, generic spatiotemporal variations in the flow give rise to variations in the heat flux for a given fluid-solid temperature difference, which can be interpreted as spatiotemporal fluctuations of the instantaneous heat transfer coefficient. These variations can lead to unsteady and conjugate heat transfer, in which the exchanged heat flux arises from an interaction between the bulk fluid temperature and the temperature in the solid. Further, the non-linear coupling between the fluctuating temperature differences and the heat transfer coefficients can lead to an effect we refer to as augmentation, which quantitatively describes the ability of a particular arrangement to have a different time-mean heat flux from the product between the mean heat transfer coefficient and the mean temperature difference across the fluid. In this thesis we investigate unsteady conductive-convective heat transfer, and the resulting augmentative and conjugate effects. The overriding purpose is to propose a simple framework for the description of the effect of unsteadiness on the overall heat exchange performance, leading to the improved understanding and prediction of related processes. An analytical model is developed that describes the thermal interaction between the solid and the fluid domains with the use of a time-varying heat transfer coefficient, and assuming 1-D conductive heat transfer in the solid. It is found that the degree of augmentation can be defined in terms of key independent problem variables, including: a time-averaged Biot number, a dimensionless solid thickness (normalised by an unsteady thermal diffusion length), a heat transfer coefficient fluctuation intensity (amplitude normalised by the mean), and a heat capacity ratio between the fluid and solid domains. The model is used to produce regime maps that describe the range of conditions in which augmentation effects are exhibited. Such maps can be used in the design of improved heat exchangers or thermal insulation, for example through the novel selection of materials that can exploit these augmentation effects. Cases are considered for which the bulk fluid temperature is fixed, and for which the bulk fluid temperature is allowed to respond to the solid, both in thermally developing and fully developed flows. Generally the augmentation effect is found to be negative, reflecting a reduction in the heat exchange capability. However, regions of positive augmentation are uncovered in thermally developing convective flows, which has important implications for heat exchanger design. The approach is used to model two different thermodynamic cycles; gas springs and two-phase thermodynamic oscillator engines. Firstly, for the gas spring it is found that at low Peclet numbers the addition of an insulating layer exacerbates the thermal losses in the spring as it shifts the system away from the isothermal ideal operation. Conversely at high Peclet numbers thicker insulating layers reduces the loss as it shifts the system towards the adiabatic ideal. It is also found that there is an intermediate thickness of material thickness which maximises the loss in the gas spring, by up to 20 % of the nominal maximum loss for an isothermal cylinder lining. Secondly the heat transfer and resulting shuttle loss in the vapour space of a two-phase thermofluidic oscillator was studied. This model was compared to experimental data from a working test bed and resulted in a substantial improvement in the calculation of the cycle efficiency of the engine. Detailed flow measurements were also conducted on a fluid film flowing down a heated incline, to investigate the effects of unsteady heat transfer in these flows. These wavy interfacial flows exhibit large and periodic fluctuations in heat transfer and the frequency and amplitude of the waves was controlled by a specially constructed flow preparation arrangement. To enable the temperature and heat flux measurements the heated incline consisted of a thin titanium foil. A novel measurement technique was developed (here, for the first time) to measure the film interface height (film thickness), film temperature and instantaneous heat flux through the heated surface. This was achieved with a combination of spatiotemporally resolved Laser Induced Florescence (LIF) measurements and Infra-red (IR) thermography. In the case of steady flow conditions (without forced waves) the formation of Marangoni driven rivulet structures are observed on the film surface. In the case of unsteady flow the formation of waves on the film surface result in visible mixing of the rivulet structures. The mixing and the unsteady motion of the waves give rise to a periodic fluctuation in the heat transfer coefficient, with fluctuation intensities of up to 35 % being recorded. The model predictions of the augmentation ratio for these problems are also compared to direct measurements from each case. Good agreement is observed with the experimental results for the global heat transfer trends. In both cases the augmentation ratio is negative, reflecting a reduction in time-averaged heat transfer. Finally, a backwards-facing step flow is also studied, for which a low magnitude of augmentation was observed (< 1 %), considerably lower than the augmentation measured in the thin film flows which were up to 10 %.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Gupta, Jatin. « Application Of Conjugate Heat Transfer (Cht) Methodology For Computation Of Heat Transfer On A Turbine Blade ». The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1230064860.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Conjugated heat transfers"

1

Zudin, I︠U︡ B. Theory of periodic conjugate heat transfer. 2e éd. Heidelberg [Germany] : Springer, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Conjugate problems in convective heat transfer. Boca Raton : CRC Press, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Dorfman, A. Sh. Conjugate problems in convective heat transfer. Boca Raton, FL : CRC Press, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Zudin, Yuri B. Theory of Periodic Conjugate Heat Transfer. Berlin, Heidelberg : Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-53445-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Zudin, Yuri B. Theory of Periodic Conjugate Heat Transfer. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-21421-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Zudin, Yuri B. Theory of Periodic Conjugate Heat Transfer. Berlin, Heidelberg : Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-70725-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Zudin, Yuri B. Theory of Periodic Conjugate Heat Transfer. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-25167-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Pelletier, Dominique. An adaptive finite element method for conjugate heat transfer. Washington, D.C : American Institute of Aeronautics and Astronautics, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

S, Liou M., et Lewis Research Center. Institute for Computational Mechanics in Propulsion., dir. On the application of chimera/unstructured hybrid grids for conjugate heat transfer. Cleveland, Ohio : NASA Lewis Research Center, ICOMP, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Meng-Sing, Liou, et Lewis Research Center. Institute for Computational Mechanics in Propulsion., dir. On the application of chimera/unstructured hybrid grids for conjugate heat transfer. Cleveland, Ohio : NASA Lewis Research Center, ICOMP, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Conjugated heat transfers"

1

Nunes, J. S., R. M. Cotta, M. R. Avelino et S. Kakaç. « Conjugated Heat Transfer in Microchannels ». Dans Microfluidics Based Microsystems, 61–82. Dordrecht : Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9029-4_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Howell, John R., M. Pinar Mengüç, Kyle Daun et Robert Siegel. « Conjugate Heat Transfer in Participating Media ». Dans Thermal Radiation Heat Transfer, 683–740. Seventh edition. | Boca Raton : CRC Press, 2021. | Revised edition of : Thermal radiation heat transfer / John R. Howell, M. Pinar Mengüç, Robert Siegel. Sixth edition. 2015. : CRC Press, 2020. http://dx.doi.org/10.1201/9780429327308-15.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Herwig, Heinz. « Konjugierter Wärmeübergang (conjugate heat transfer) ». Dans Wärmeübertragung A-Z, 120–22. Berlin, Heidelberg : Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-56940-1_28.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Zudin, Yuri B. « Periodical Model of Turbulent Heat Transfer ». Dans Theory of Periodic Conjugate Heat Transfer, 159–79. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21421-9_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Zudin, Yuri B. « Introduction ». Dans Theory of Periodic Conjugate Heat Transfer, 1–23. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21421-9_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Zudin, Yuri B. « Construction of a General Solution of the Problem ». Dans Theory of Periodic Conjugate Heat Transfer, 25–35. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21421-9_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Zudin, Yuri B. « Solution of Characteristic Problems ». Dans Theory of Periodic Conjugate Heat Transfer, 37–72. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21421-9_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Zudin, Yuri B. « Universal Algorithm of Computation of the Factor of Conjugation ». Dans Theory of Periodic Conjugate Heat Transfer, 73–94. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21421-9_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Zudin, Yuri B. « Solution of Special Problems ». Dans Theory of Periodic Conjugate Heat Transfer, 95–111. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21421-9_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Zudin, Yuri B. « Step and Nonperiodic Oscillations of the Heat Transfer Intensity ». Dans Theory of Periodic Conjugate Heat Transfer, 113–22. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21421-9_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Conjugated heat transfers"

1

Liu, Hongquan, Yanan He, Yingwei Wu, Guanghui Su, Wenxi Tian et Suizheng Qiu. « Preliminary Development of a Coupling Environment Based on MOOSE and OpenFOAM and Its Application on Plate Fuel Modeling ». Dans 2022 29th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/icone29-91437.

Texte intégral
Résumé :
Abstract High-fidelity analysis of nuclear reactors is beneficial to improving the efficiency of nuclear reactor designs. To enhance modeling fidelity, multi-physics coupling simulations are typically employed. To this end, several platforms for code coupling are under active development, including MOOSE, SALOME, et al. In this paper, the loosely coupling interface between MOOSE and OpenFOAM was developed, aiming to extend the Computational Fluid Dynamics (CFD) capacity for MOOSE. Specifically, process control, data transfer, and mesh projection of the coupled simulation are realized by the “MultiApps” and “Transfers” module within MOOSE and the “externalCoupled” module within OpenFOAM, where text-based data transfer is used. The CFD capabilities of OpenFOAM and the finite element analysis capabilities of MOOSE are fully utilized in this coupling environment. Subsequently, a conjugated heat transfer problem for plate fuel was conducted to demonstrate the feasibility of the developed interface, where variables consisting of temperature, convective heat transfer coefficient, and heat flux at outer surfaces are transferred between MOOSE and OpenFOAM. The predicted results of the plate fuel seem reasonable and the validity of the novel coupling code for MOOSE and OpenFOAM is preliminary confirmed.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Sabry, Mohamed-Nabil. « Modeling conjugate heat transfer ». Dans 2010 3rd International Conference on Thermal Issues in Emerging Technologies Theory and Applications (ThETA). IEEE, 2010. http://dx.doi.org/10.1109/theta.2010.5766373.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Kuznetsov, Yuri N., et E. I. Kalinin. « CONJUGATED UNSTEADY CONVECTIVE HEAT TRANSFER IN ANNULI ». Dans International Heat Transfer Conference 8. Connecticut : Begellhouse, 1986. http://dx.doi.org/10.1615/ihtc8.1980.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Allen, P. H. G., et E. P. Childs. « CONJUGATED HEAT TRANSFER IN DISC-TYPE POWER TRANSFORMER WINDINGS ». Dans International Heat Transfer Conference 8. Connecticut : Begellhouse, 1986. http://dx.doi.org/10.1615/ihtc8.4360.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Rostami, Ali A., A. Y. Hassan et S. L. Chia. « CONJUGATE HEAT TRANSFER IN MICROCHANNELS ». Dans Heat Transfer and Transport Phenomena in Microscale. Connecticut : Begellhouse, 2023. http://dx.doi.org/10.1615/1-56700-150-5.150.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

He, L., et M. L. G. Oldfield. « Unsteady Conjugate Heat Transfer Modelling ». Dans ASME Turbo Expo 2009 : Power for Land, Sea, and Air. ASMEDC, 2009. http://dx.doi.org/10.1115/gt2009-59174.

Texte intégral
Résumé :
For high pressure turbine heat transfer designs, a primary requirement is to predict blade metal temperature. There has been considerable recent effort in developing coupled fluid convection and solid conduction (conjugate) heat transfer prediction methods. They are so far, however, confined to steady flows. In the present work, a new approach to conjugate analysis for periodic unsteady flows of practical interest is proposed and demonstrated. This paper starts with a simple model analysis to quantify the huge disparity in time scale between convection and conduction and the implications of this for steady and unsteady conjugate solutions. To realign the greatly mismatched time scales, a hybrid approach of coupling between time-domain fluid solution and frequency-domain solid conduction is adopted in conjunction with a continuously updated Fourier transform at the interface. A novel semi-analytical harmonic interface condition is introduced, initially for reducing the truncation error in Finite-difference discretization. More interestingly, the semianalytical interface condition enables the unsteady conjugate coupling to be achieved without simultaneously solving the unsteady temperature field. This unique feature leads to a very efficient and accurate unsteady conjugate solution approach. The fluid and solid solutions are validated against analytical solutions and experimental data. The implemented unsteady conjugate method has been demonstrated for a turbine cascade subject to inlet unsteady hot streaks.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Aidun, Cyrus K., et Sung P. Lin. « CONJUGATE HEAT TRANSFER FROM A HOLLOW CYLINDER ». Dans International Heat Transfer Conference 8. Connecticut : Begellhouse, 1986. http://dx.doi.org/10.1615/ihtc8.3520.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Knupp, Diego C., Renato M. Cotta et Carolina P. Naveira Cotta. « Conjugated Heat Transfer in Heat Spreaders With Micro-Channels ». Dans ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ht2013-17818.

Texte intégral
Résumé :
This work is aimed at the experimental verification of a recently proposed single domain formulation of conjugated conduction-convection heat transfer problems, which are often of relevance in thermal micro-systems analysis. The single domain formulation simultaneously models the heat transfer phenomena at both the fluid streams and the channels walls by making use of coefficients represented as space variable functions with abrupt transitions occurring at the fluid-wall interfaces. The Generalized Integral Transform Technique (GITT) is then employed in the hybrid numerical-analytical solution of the resulting convection-diffusion problem with variable coefficients. The considered experimental investigation involves the determination of the temperature distribution over a heat spreader made of a nanocomposite plate with a longitudinally molded single micro-channel that exchanges heat with the plate by flowing hot water at an adjustable mass flow rate. The infrared thermography technique is employed to analyze the response of the heat spreader surface, aiming at the analysis of micro-systems that provide a thermal response from either their normal operation or due to a promoted stimulus for characterization purposes.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kassemi, M., et Benjamin T. F. Chung. « CONJUGATED HEAT TRANSFER OF A RADIATIVELY PARTICIPATING GAS IN A CHANNEL ». Dans International Heat Transfer Conference 8. Connecticut : Begellhouse, 1986. http://dx.doi.org/10.1615/ihtc8.4250.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Furmanski, Piotr, et Tomasz S. Wisniewski. « SOME ASPECTS OF CONJUGATED RADIATIVE-CONDUCTIVE HEAT TRANSFER IN THERMAL INSULATIONS ». Dans Advances in Heat Transfer Engineering. Connecticut : Begellhouse, 2023. http://dx.doi.org/10.1615/bht4.140.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Conjugated heat transfers"

1

Francis, Nicholas Donald, Jr. Conjugate heat transfer analysis using the Calore and Fuego codes. Office of Scientific and Technical Information (OSTI), septembre 2007. http://dx.doi.org/10.2172/921734.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Olivas, Eric, Keith Woloshun, Lukas Zavorka et Bhavini Singh. Conjugate Heat Transfer Analysis in Pressurized Helium Gas Cooling Channels. Office of Scientific and Technical Information (OSTI), octobre 2023. http://dx.doi.org/10.2172/2007342.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Velusamy, K., V. Balaubramanian, G. Vaidyanathan et S. C. Chetal. Conjugate heat transfer analysis of multiple enclosures in prototype fast breeder reactor. Office of Scientific and Technical Information (OSTI), septembre 1995. http://dx.doi.org/10.2172/107784.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Chenoweth, D. R. Mixed-convective, conjugate heat transfer during molten salt quenching of small parts. Office of Scientific and Technical Information (OSTI), février 1997. http://dx.doi.org/10.2172/479182.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Arts, Tony, et Carlos Benocci. Experimental and Numerical Investigation of Conjugate Heat Transfer in Rib-roughened Duct. Fort Belvoir, VA : Defense Technical Information Center, octobre 2011. http://dx.doi.org/10.21236/ada552359.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Olivas, Eric Richard. Conjugate Heat Transfer and Thermal Mechanical Analysis for the Fast Spectrum Neutron Source for Materials Irradiation. Office of Scientific and Technical Information (OSTI), février 2016. http://dx.doi.org/10.2172/1237426.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Olivas, Eric Richard. Conjugate Heat Transfer and Thermal Mechanical Analysis for Liquid Metal Targets for High Power Electron Beams. Office of Scientific and Technical Information (OSTI), février 2016. http://dx.doi.org/10.2172/1239918.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Vegendla, Prasad, Adrian Tentner, Dillon Shaver, Aleks Obabko et Elia Merzari. DEVELOPMENT AND VALIDATION OF A CONJUGATE HEAT TRANSFER MODEL FOR THE TWO-PHASE CFD CODE NEK-2P. Office of Scientific and Technical Information (OSTI), septembre 2019. http://dx.doi.org/10.2172/1570458.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Rimpel, Aaron. PR-316-17200-R03 A Study of the Effects of Liquid Contamination on Seal Performance. Chantilly, Virginia : Pipeline Research Council International, Inc. (PRCI), janvier 2021. http://dx.doi.org/10.55274/r0012015.

Texte intégral
Résumé :
This project is a continuation of research to enhance dry gas seal (DGS) reliability. Previous work reviewed failures from literature and experience of manufacturers and end-users and identified that liquid contamination was the most common cause, but it was concluded there was insufficient quantitative data to base recommendations on for further DGS reliability enhancements. Therefore, experimental and analytical investigations were pursued to fill the void. The ultimate objective was to be able to predict DGS failures due to liquid contamination, which could lead to greater DGS reliability through improvements in design, instrumentation, and monitoring. From the previous project phase, testing had demonstrated that the introduction of small quantities of oil (liquid mass fraction up to 3%) produced a slight increase in torque but impacts on temperatures and leakage were negligible. Previous simulations demonstrated converged two-phase computational fluid dynamics (CFD) with conjugate heat transfer (CHT) solutions of the seal and reasonable trends, but the agreement with test data was lower than desired. The current project phase made significant improvements to the single- and two-phase CFD simulation of the DGS, lowering the discrepancy of all previously reported performance parameters. The current simulations were performed only at the 700 psi supply pressure case. Ideal gas was used, and CHT coupling was used to predict temperatures of the primary ring. The previous wall thermal boundary conditions were not well understood, so the current work focused on establishing performance with adiabatic walls.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie