Littérature scientifique sur le sujet « Conductive nanofillers »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Conductive nanofillers ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Conductive nanofillers"
Hamdi, K., Z. Aboura, W. Harizi et K. Khellil. « Improvement of the electrical conductivity of carbon fiber reinforced polymer by incorporation of nanofillers and the resulting thermal and mechanical behavior ». Journal of Composite Materials 52, no 11 (30 août 2017) : 1495–503. http://dx.doi.org/10.1177/0021998317726588.
Texte intégralPark, Chansul, Min Su Kim, Hye Hyun Kim, Sung-Hyuk Sunwoo, Dong Jun Jung, Moon Kee Choi et Dae-Hyeong Kim. « Stretchable conductive nanocomposites and their applications in wearable devices ». Applied Physics Reviews 9, no 2 (juin 2022) : 021312. http://dx.doi.org/10.1063/5.0093261.
Texte intégralLiu, Yuanjin, Lixiao Yao, Yue Bu et Qing Sun. « Synergistical Performance Modification of Epoxy Resin by Nanofillers and Carboxyl-Terminated Liquid Nitrile–Butadiene Rubber ». Materials 14, no 16 (16 août 2021) : 4601. http://dx.doi.org/10.3390/ma14164601.
Texte intégralMitkus, Rytis, Lena Piechowiak et Michael Sinapius. « Characterization of UV Light Curable Piezoelectric 0-0-3 Composites Filled with Lead-Free Ceramics and Conductive Nanoparticles ». Journal of Composites Science 7, no 2 (20 février 2023) : 89. http://dx.doi.org/10.3390/jcs7020089.
Texte intégralPaszkiewicz, Sandra, Anna Szymczyk, Agata Zubkiewicz, Jan Subocz, Rafal Stanik et Jedrzej Szczepaniak. « Enhanced Functional Properties of Low-Density Polyethylene Nanocomposites Containing Hybrid Fillers of Multi-Walled Carbon Nanotubes and Nano Carbon Black ». Polymers 12, no 6 (16 juin 2020) : 1356. http://dx.doi.org/10.3390/polym12061356.
Texte intégralArboleda-Clemente, Laura, Xoán García-Fonte, María-José Abad et Ana Ares-Pernas. « Role of rheology in tunning thermal conductivity of polyamide 12/polyamide 6 composites with a segregated multiwalled carbon nanotube network ». Journal of Composite Materials 52, no 18 (25 décembre 2017) : 2549–57. http://dx.doi.org/10.1177/0021998317749715.
Texte intégralZhi, Chunyi, Yibin Xu, Yoshio Bando et Dmitri Golberg. « Highly Thermo-conductive Fluid with Boron Nitride Nanofillers ». ACS Nano 5, no 8 (19 juillet 2011) : 6571–77. http://dx.doi.org/10.1021/nn201946x.
Texte intégralDeng, H., R. Zhang, E. Bilotti, J. Loos et T. Peijs. « Conductive polymer tape containing highly oriented carbon nanofillers ». Journal of Applied Polymer Science 113, no 2 (15 juillet 2009) : 742–51. http://dx.doi.org/10.1002/app.29624.
Texte intégralNaresh, Chillu, Gandluri Parameswarreddy, Asapu Vinaya Kumar, Rengaswamy Jayaganthan, Venkatachalam Subramanian, Ramanujam Sarathi et M. G. Danikas. « Understanding the dielectric properties and electromagnetic shielding efficiency of zirconia filled epoxy-MWCNT composites ». Engineering Research Express 4, no 1 (19 janvier 2022) : 015008. http://dx.doi.org/10.1088/2631-8695/ac4a4a.
Texte intégralRibezzo, Alessandro, Matteo Fasano, Luca Bergamasco, Luigi Mongibello et Eliodoro Chiavazzo. « Multi-Scale Numerical Modelling for Predicting Thermo-Physical Properties of Phase-Change Nanocomposites for Cooling Energy Storage ». Tecnica Italiana-Italian Journal of Engineering Science 65, no 2-4 (30 juillet 2021) : 201–4. http://dx.doi.org/10.18280/ti-ijes.652-409.
Texte intégralThèses sur le sujet "Conductive nanofillers"
Raimondo, Marialuigia. « Improving the aircraft safety by advanced structures and protecting nanofillers ». Doctoral thesis, Universita degli studi di Salerno, 2014. http://hdl.handle.net/10556/1480.
Texte intégralInspection and Maintenance are important aspects when considering the availability of aircraft for revenue flights. Modern airframe design is exploiting new exciting developments in materials and structures to construct ever more efficient air vehicle able to enable efficient maintenance. The improvement in the aircraft safety by advanced structures and protecting nanofillers is a revolutionary approach that should lead to the creation of novel generation of multifunctional aircraft materials with strongly desired properties and design flexibilities. In recent years, the development of new nanostructured materials has enabled an evolving shift from single purpose materials to multifunctional systems that can provide greater value than the base materials alone; these materials possess attributes beyond the basic strength and stiffness that typically drive the science and engineering of the material for structural systems. Structural materials can be designed to have integrated electrical, electromagnetic, flame resistance, and possibly other functionalities that work in synergy to provide advantages that reach beyond that of the sum of the individual capabilities. Materials of this kind have tremendous potential to impact future structural performance by reducing size, weight, cost, power consumption and complexity while improving efficiency, safety and versatility. It is a well-known fact that, actually, also a very advanced design of an aircraft has to take required inspection intervals into account. An aircraft with inherent protective abilities could help to significantly extend the inspection intervals, thereby increasing aircraft availability. The challenge in this research is to develop and apply a multifunctional composite for structural applications. The aim of this project is the formulation, preparation and characterization of structural thermosetting composites containing dispersed protective nanofillers. This project specifically targets composites tailored for multifunctional applications such as lightning strike protection, and flame resistance. These composites were designed to enable their application on next generation aircrafts. With regard to the objectives of this PhD project the multifunctional composite systems were developed with the aim of overcoming the following drawbacks of the composite materials: • reduced electrical conductivity; • poor flame resistance. The thermosetting material was projected considering compatibility criteria so that to integrate different functions into a material that is capable of bearing mechanical loads and serves as a structural material element. [edited by author]
XII n.s.
Benchirouf, Abderrahmane. « Carbonaceous Nanofillers and Poly(3,4-ethylenedioxythiophene) Poly(styrenesulfonate) Nanocomposites for Wireless Sensing Applications ». Universitätsverlag der Technischen Universität Chemnitz, 2018. https://monarch.qucosa.de/id/qucosa%3A31903.
Texte intégralPo-TingLin et 林柏廷. « Exploring the Effects of Nanofillers on the Lithium Ion Conduction Mechanism of Gel Polymer Electrolyte for Lithium Ion Battery via Multiscale Molecular Simulation ». Thesis, 2019. http://ndltd.ncl.edu.tw/handle/mdk4u2.
Texte intégralLivres sur le sujet "Conductive nanofillers"
Choudhury, Arupjyoti. Conducting Polymers Reinforced with Carbon Nanofillers : Synthesis, Characterization and Applications. Wiley & Sons, Limited, John, 2019.
Trouver le texte intégralChapitres de livres sur le sujet "Conductive nanofillers"
Hong, Haiping, Dustin Thomas, Mark Horton, Yijiang Lu, Jing Li, Pauline Smith et Walter Roy. « Nanocomposites of Polymers Made Conductive by Nanofillers ». Dans Nanostructured Conductive Polymers, 737–63. Chichester, UK : John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470661338.ch19.
Texte intégralMahmood, Tahira, Abid Ullah et Rahmat Ali. « Improved Nanocomposite Materials and Their Applications ». Dans Nanocomposite Materials [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.102538.
Texte intégralKumar Kambila, Vijaya. « Structural, Optical, and Electrical Studies of PAN-Based Gel Polymer Electrolytes for Solid-State Battery Applications ». Dans Management and Applications of Energy Storage Devices. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.98825.
Texte intégralKausar, Ayesha. « Essence of nanoparticles and functional nanofillers for conducting polymers ». Dans Conducting Polymer-Based Nanocomposites, 57–76. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-822463-2.00001-4.
Texte intégralKausar, Ayesha. « Effect of interaction between conjugated polymers and nanofillers on sensing properties ». Dans Conducting Polymer-Based Nanocomposites, 237–63. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-822463-2.00003-8.
Texte intégralSaeedi, Seyyedeh Narges, Shiva Mohajer, Gita Firouzan et Mir Saeed Seyed Dorraji. « Conducting polymer/carbonaceous nanocomposite systems for antistatic applications ». Dans Polymeric Nanocomposites with Carbonaceous Nanofillers for Aerospace Applications, 165–86. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-323-99657-0.00003-x.
Texte intégralActes de conférences sur le sujet "Conductive nanofillers"
Frechette, M., S. B. Ghafarizadeh, S. Vadeboncoeur, E. Zribi, C. Vanga-Bouanga et E. David. « Surface resistance to erosion for various polymer composites containing conductive nanofillers ». Dans 2017 1st International Conference on Electrical Materials and Power Equipment (ICEMPE). IEEE, 2017. http://dx.doi.org/10.1109/icempe.2017.7982147.
Texte intégralLiu, Min-Jie, Zi-Qin Zhu, Li-Wu Fan et Zi-Tao Yu. « An Experimental Study of Inward Solidification of Nano-Enhanced Phase Change Materials (NePCM) Inside a Spherical Capsule ». Dans ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/ht2016-7317.
Texte intégralCh, Hopmann, et Fragner J. « Development of Electrically Conductive Plastics Compounds based on Copper Fibres in Combination with Nanofillers ». Dans 9th International Conference on Multi-Material Micro Manufacture. Singapore : Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-3353-7_270.
Texte intégralTallman, T. N., et K. W. Wang. « Damage Sensitivity and Multiple Damage Detection in Glass Fiber/Epoxy Laminates With Carbon Black Filler via Electrical Impedance Tomography ». Dans ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/smasis2014-7403.
Texte intégralKoo, G. M., et T. N. Tallman. « On the Development of Tensorial Deformation-Resistivity Constitutive Relations in Conductive Nanofiller-Modified Composites ». Dans ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/smasis2018-7965.
Texte intégralLebedev, Oleg V., Alexander S. Kechek’yan, Vitaly G. Shevchenko, Tikhon S. Kurkin, Evgeny K. Golubev, Evgeny A. Karpushkin, Vladimir G. Sergeev et Alexander N. Ozerin. « A study of the oriented composites with the conductive segregated structure obtained via solid-phase processing of the UHMWPE reactor powder mixed with the carbon nanofillers ». Dans VIII INTERNATIONAL CONFERENCE ON “TIMES OF POLYMERS AND COMPOSITES” : From Aerospace to Nanotechnology. Author(s), 2016. http://dx.doi.org/10.1063/1.4949618.
Texte intégralPARK, SOYEON, et KUN (KELVIN) FU. « ADDITIVE MANUFACTURING OF HIGH-LOADING POLYMER NANOCOMPOSITES WITH MULTISCALE ALIGNMENT ». Dans Thirty-sixth Technical Conference. Destech Publications, Inc., 2021. http://dx.doi.org/10.12783/asc36/35753.
Texte intégralHernandez, J. A., H. Zhu, F. Semperlotti et T. N. Tallman. « The Transient Response of Piezoresistive CNF-Modified Epoxy Rods to One-Dimensional Wave Packet Excitation ». Dans ASME 2021 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/smasis2021-67801.
Texte intégralI. Mourad, Abdel-Hamid, Mouza S. Al Mansoori, Lamia A. Al Marzooqi, Farah A. Genena et Nizamudeen Cherupurakal. « Optimization of Curing Conditions and Nanofiller Incorporation for Production of High Performance Laminated Kevlar/Epoxy Nanocomposites ». Dans ASME 2018 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/pvp2018-85067.
Texte intégralTaha-Tijerina, Jaime, T. N. Narayanan, Soorya Avali et P. M. Ajayan. « 2D Structures-Based Energy Management Nanofluids ». Dans ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87890.
Texte intégral