Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Concentrated interactions.

Articles de revues sur le sujet « Concentrated interactions »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Concentrated interactions ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Qiu, X., X. L. Wu, J. Z. Xue, D. J. Pine, D. A. Weitz et P. M. Chaikin. « Hydrodynamic interactions in concentrated suspensions ». Physical Review Letters 65, no 4 (23 juillet 1990) : 516–19. http://dx.doi.org/10.1103/physrevlett.65.516.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Markovic, Ivana, R. H. Ottewill, Sylvia M. Underwood et T. F. Tadros. « Interactions in concentrated nonaqueous polymer latices ». Langmuir 2, no 5 (septembre 1986) : 625–30. http://dx.doi.org/10.1021/la00071a018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Boyer, Mireille, Marie-Odile Roy, Magali Jullien, Françoise Bonneté et Annette Tardieu. « Protein interactions in concentrated ribonuclease solutions ». Journal of Crystal Growth 196, no 2-4 (janvier 1999) : 185–92. http://dx.doi.org/10.1016/s0022-0248(98)00838-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Wennerström, Håkan. « Electrostatic interactions in concentrated colloidal dispersions ». Physical Chemistry Chemical Physics 19, no 35 (2017) : 23849–53. http://dx.doi.org/10.1039/c7cp02594g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Lee, Alpha A., Carla S. Perez-Martinez, Alexander M. Smith et Susan Perkin. « Underscreening in concentrated electrolytes ». Faraday Discussions 199 (2017) : 239–59. http://dx.doi.org/10.1039/c6fd00250a.

Texte intégral
Résumé :
Screening of a surface charge by an electrolyte and the resulting interaction energy between charged objects is of fundamental importance in scenarios from bio-molecular interactions to energy storage. The conventional wisdom is that the interaction energy decays exponentially with object separation and the decay length is a decreasing function of ion concentration; the interaction is thus negligible in a concentrated electrolyte. Contrary to this conventional wisdom, we have shown by surface force measurements that the decay length is an increasing function of ion concentration and Bjerrum length for concentrated electrolytes. In this paper we report surface force measurements to test directly the scaling of the screening length with Bjerrum length. Furthermore, we identify a relationship between the concentration dependence of this screening length and empirical measurements of activity coefficient and differential capacitance. The dependence of the screening length on the ion concentration and the Bjerrum length can be explained by a simple scaling conjecture based on the physical intuition that solvent molecules, rather than ions, are charge carriers in a concentrated electrolyte.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Rowley, B. O., et T. Richardson. « Protein-Lipid Interactions in Concentrated Infant Formula ». Journal of Dairy Science 68, no 12 (décembre 1985) : 3180–88. http://dx.doi.org/10.3168/jds.s0022-0302(85)81225-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Verma, Ritu, J. C. Crocker, T. C. Lubensky et A. G. Yodh. « Entropic Colloidal Interactions in Concentrated DNA Solutions ». Physical Review Letters 81, no 18 (2 novembre 1998) : 4004–7. http://dx.doi.org/10.1103/physrevlett.81.4004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Curtis, R. A., J. Ulrich, A. Montaser, J. M. Prausnitz et H. W. Blanch. « Protein-protein interactions in concentrated electrolyte solutions ». Biotechnology and Bioengineering 79, no 4 (18 juin 2002) : 367–80. http://dx.doi.org/10.1002/bit.10342.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Chagnes, Alexandre, Stamatios Nicolis, Bernard Carré, Patrick Willmann et Daniel Lemordant. « Ion-Dipole Interactions in Concentrated Organic Electrolytes ». ChemPhysChem 4, no 6 (6 juin 2003) : 559–66. http://dx.doi.org/10.1002/cphc.200200512.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Coşkun, Özgenur, Halime Pehlivanoğlu et İbrahim Gülseren. « Pilot Plant Scale Manufacture of Bread Enriched with Seed Protein Concentrates ». Turkish Journal of Agriculture - Food Science and Technology 9, no 6 (2 juillet 2021) : 991–97. http://dx.doi.org/10.24925/turjaf.v9i6.991-997.3925.

Texte intégral
Résumé :
For many seeds, cold press technology generates higher quantities of cakes than seed oils, which are concentrated in proteins. Valorization of the cakes could offer a viable strategy to manufacture protein fortified foods with comparable characteristics as the conventional products. Here, black cumin, grape seed and pumpkin seed protein concentrates were prepared based on an alkaline extraction-isoelectric precipitation technique. The influence of protein concentrate addition on the flour, dough and bread characteristics were investigated for textural profile, gluten quality and visual characteristics including color attributes. While the interactions between gluten and seed proteins were mostly weak, some of the physicochemical attributes differed significantly. In terms of volume and visual characteristics, pumpkin seed protein concentrates enriched bread demonstrated similar characteristics as the controls, while black cumin or grape seed protein concentrate enriched wheat flours were more resistant and less extensible than the controls. Similarities and differences between controls and protein enriched gluten-free or gluten-bearing bread were discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Zhu, J. X., D. J. Durian, J. Müller, D. A. Weitz et D. J. Pine. « Scaling of transient hydrodynamic interactions in concentrated suspensions ». Physical Review Letters 68, no 16 (20 avril 1992) : 2559–62. http://dx.doi.org/10.1103/physrevlett.68.2559.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Ourmières-Bonafos, Thomas, et Konstantin Pankrashkin. « Discrete spectrum of interactions concentrated near conical surfaces ». Applicable Analysis 97, no 9 (9 mai 2017) : 1628–49. http://dx.doi.org/10.1080/00036811.2017.1325472.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Mondy, L. A., A. L. Graham et J. L. Jensen. « Continuum approximations and particle interactions in concentrated suspensions ». Journal of Rheology 30, no 5 (octobre 1986) : 1031–52. http://dx.doi.org/10.1122/1.549914.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Podio-Guidugli, P. « Examples of concentrated contact interactions in simple bodies ». Journal of Elasticity 75, no 2 (janvier 2005) : 167–86. http://dx.doi.org/10.1007/s10659-005-3029-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Wang, Yunwei, Li Li, Yiming Wang, Qingsong Yang, Zhishuang Ye, Liang Sun, Fan Yang et Xuhong Guo. « Effect of Counterions on the Interaction among Concentrated Spherical Polyelectrolyte Brushes ». Polymers 13, no 12 (8 juin 2021) : 1911. http://dx.doi.org/10.3390/polym13121911.

Texte intégral
Résumé :
The effect of counterions on interactions among spherical polyelectrolyte brushes (SPBs) was systematically investigated by rheology, small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). The SPB particles consist of a solid polystyrene (PS) core with a diameter of ca.100 nm and a chemically grafted poly-(acrylic acid) (PAA) brush layer. Metal ions of different valences (Na+, Mg2+ and Al3+) were used as counterions to study the interactions among concentrated SPBs. The so-called “structure factor peak” in SAXS, the “local ordered structure peak” in WAXS and rheological properties indicated the interactions among concentrated SPBs. Combining SAXS, WAXS and rheology, the formation mechanism of the local ordered structure among PAA chains in the overlapped area of adjacent SPB, which was generated due to the bridge function of counterions, was confirmed. In contrast, excessive counterions shielded the electrostatic interaction among PAA chains and destroyed the local ordered structure. This work enriches our understanding of the polyelectrolyte assembly in concentrated SPBs under the effect of counterions and lays the foundations for SPB applications.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Everett, W. Neil, Daniel J. Beltran-Villegas et Michael A. Bevan. « Concentrated Diffusing Colloidal Probes of Ca2+-Dependent Cadherin Interactions ». Langmuir 26, no 24 (21 décembre 2010) : 18976–84. http://dx.doi.org/10.1021/la1038443.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Zhang, Tian Hui, Bonny W. M. Kuipers, Wen-de Tian, Jan Groenewold et Willem K. Kegel. « Polydispersity and gelation in concentrated colloids with competing interactions ». Soft Matter 11, no 2 (2015) : 297–302. http://dx.doi.org/10.1039/c4sm02273d.

Texte intégral
Résumé :
In colloids with competing interactions, an electric field-induced column-like structure relaxes back to the microcrystalline gel spontaneously as the field is switched off. Computer simulations show that even a very small polydispersity destabilizes ordered periodic structures that would have been stable in a monodisperse system.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Ametov, Igor, et Clive A. Prestidge. « Hydrophobic Interactions in Concentrated Colloidal Suspensions : A Rheological Investigation ». Journal of Physical Chemistry B 108, no 32 (août 2004) : 12116–22. http://dx.doi.org/10.1021/jp0491257.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Caminiti, R., P. Cucca et D. Atzei. « Phosphate-water interactions in concentrated aqueous phosphoric acid solutions ». Journal of Physical Chemistry 89, no 8 (avril 1985) : 1457–60. http://dx.doi.org/10.1021/j100254a031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Barone, G., et C. Giancola. « Peptide-peptide interactions in water and concentrated urea solutions ». Pure and Applied Chemistry 62, no 1 (1 janvier 1990) : 57–68. http://dx.doi.org/10.1351/pac199062010057.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Busch, Sebastian, Christian D. Lorenz, Jonathan Taylor, Luis Carlos Pardo et Sylvia E. McLain. « Short-Range Interactions of Concentrated Proline in Aqueous Solution ». Journal of Physical Chemistry B 118, no 49 (25 novembre 2014) : 14267–77. http://dx.doi.org/10.1021/jp508779d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Chinchaladze, N., G. Jaiani, B. Maistrenko et P. Podio-Guidugli. « Concentrated contact interactions in cuspidate prismatic shell-like bodies ». Archive of Applied Mechanics 81, no 10 (31 décembre 2010) : 1487–505. http://dx.doi.org/10.1007/s00419-010-0496-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Nilsson, Viktor, Diana Bernin, Daniel Brandell, Kristina Edström et Patrik Johansson. « Interactions and Transport in Highly Concentrated LiTFSI‐based Electrolytes ». ChemPhysChem 21, no 11 (8 mai 2020) : 1166–76. http://dx.doi.org/10.1002/cphc.202000153.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Eisenberg, Bob. « Ionic Interactions Are Everywhere ». Physiology 28, no 1 (janvier 2013) : 28–38. http://dx.doi.org/10.1152/physiol.00041.2012.

Texte intégral
Résumé :
Ionic solutions are dominated by interactions because they must be electrically neutral, but classical theory assumes no interactions. Biological solutions are rather like seawater, concentrated enough so that the diameter of ions also produces important interactions. In my view, the theory of complex fluids is needed to deal with the interacting reality of biological solutions.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Meyer, N., A. N. Hrymak et L. Kärger. « Modeling Short-Range Interactions in Concentrated Newtonian Fiber Bundle Suspensions ». International Polymer Processing 36, no 3 (1 juillet 2021) : 255–63. http://dx.doi.org/10.1515/ipp-2020-4051.

Texte intégral
Résumé :
Abstract Sheet Molding Compounds (SMC) offer a cost efficient way to enhance mechanical properties of a polymer with long discontinuous fibers, while maintaining formability to integrate functions, such as ribs, beads or other structural reinforcements. During SMC manufacturing, fibers remain often in a bundled configuration and the resulting fiber architecture determines part properties. Accurate prediction of this architecture by simulation of flow under consideration of the transient rheology and transient fiber orientations can speed up the development process. In particular, the interaction of bundles is of significance to predict molding pressures correctly in a direct simulation approach, which resolves individual fiber bundles. Thus, this work investigates the tangential short-range lubrication forces between fiber bundles with analytical and numerical techniques. A relation between the effective sheared gap between bundles and the bundle separation distance at the contact point is found and compared to experimental results from literature. The result is implemented in an ABAQUS contact subroutine to incorporate short-range interactions in a direct bundle simulation framework.
Styles APA, Harvard, Vancouver, ISO, etc.
26

McConachie, Helen. « Mothers' and Fathers' Interaction with their Young Mentally Handicapped Children ». International Journal of Behavioral Development 12, no 2 (juin 1989) : 239–55. http://dx.doi.org/10.1177/016502548901200207.

Texte intégral
Résumé :
Studies of interaction between parents and their young mentally handicapped children generally lack ecological validity, ignore individual differences, and fail to consider the long-term implications of observed patterns. Such limitations may also be seen to apply to current strategies of early intervention. The paper reports a study of 21 young mentally handicapped children and their mothers and fathers, presenting data on daily patterns of child-care and observed teaching interactions. Predictions of differences between mothers and fathers, taken from literature on nonhandicapped and handicapped children, are confirmed. However, taking into consideration that fathers have less time available, parents do not differ as groups on the proportion which they spend in concentrated interaction with the child. Concentrated interaction time of mothers is related to a tendency to dominate observed teaching interactions; however, for fathers it is positively related to sensitivity in interaction. Possible implications of the results for intervention strategies are outlined.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Hoffman, Richard L. « Interrelationships of Particle Structure and Flow in Concentrated Suspensions ». MRS Bulletin 16, no 8 (août 1991) : 32–37. http://dx.doi.org/10.1557/s088376940005630x.

Texte intégral
Résumé :
Numerous commercial products either exist as concentrated suspensions of small particles or involve the processing of concentrated suspensions during some stage of their manufacture. Examples include foods, adhesives and glues, ceramic dispersions, paints, and polymer dispersions such as polyvinyl chloride plastisols. As a result, it is important for engineers to understand the flow behavior of these systems and how the flow behavior affects the way these materials can be processed.For mahy years, progress in understanding the flow behavior of concentrated suspensions was slow compared to progress on dilute systems, partly because of how the study of suspensions evolved. Building on Einstein's classical work for dilute suspensions of rigid spheres, many authors attempted to modify his equations to predict the flow behavior of more concentrated suspensions, but the extension of Einstein's work met with limited success, because nonhydrodynamic interactions cari be just as important as the hydrodynamic interactions considered by Einstein, and multiple particle interactions quickly complicate the problem as the particle concentration increases.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Hartl, Josef, Sergej Friesen, Diethelm Johannsmann, Richard Buchner, Dariush Hinderberger, Michaela Blech et Patrick Garidel. « Dipolar Interactions and Protein Hydration in Highly Concentrated Antibody Formulations ». Molecular Pharmaceutics 19, no 2 (24 janvier 2022) : 494–507. http://dx.doi.org/10.1021/acs.molpharmaceut.1c00587.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Tadros, Tharwart F. « Use of viscoelastic measurements in studying interactions in concentrated dispersions ». Langmuir 6, no 1 (janvier 1990) : 28–35. http://dx.doi.org/10.1021/la00091a005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

DeLiso, Evelyn M., Wim van Rijswijk et W. Roger Cannon. « Interactions between Al2O3 and ZrO2 powder in a concentrated suspension ». Colloids and Surfaces 53, no 2 (janvier 1991) : 383–91. http://dx.doi.org/10.1016/0166-6622(91)80149-i.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Cohen, E. G. D., et I. M. de Schepper. « Comment on “Scaling of Transient Hydrodynamic Interactions in Concentrated Suspensions” ». Physical Review Letters 75, no 11 (11 septembre 1995) : 2252. http://dx.doi.org/10.1103/physrevlett.75.2252.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Zhou, Huan-Xiang, et Osman Bilsel. « SAXS/SANS Probe of Intermolecular Interactions in Concentrated Protein Solutions ». Biophysical Journal 106, no 4 (février 2014) : 771–73. http://dx.doi.org/10.1016/j.bpj.2014.01.019.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Tadros, Th F., W. Liang, B. Costello et P. F. Luckham. « Correlation of the rheology of concentrated dispersions with interparticle interactions ». Colloids and Surfaces A : Physicochemical and Engineering Aspects 79, no 1 (octobre 1993) : 105–14. http://dx.doi.org/10.1016/0927-7757(93)80165-b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Lekkerkerker, H. N. W., J. K. G. Dhont, H. Verduin, C. Smits et J. S. van Duijneveldt. « Interactions, phase transitions and metastable states in concentrated colloidal dispersions ». Physica A : Statistical Mechanics and its Applications 213, no 1-2 (janvier 1995) : 18–29. http://dx.doi.org/10.1016/0378-4371(94)00144-i.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Baek, Youngbin, et Andrew L. Zydney. « Intermolecular interactions in highly concentrated formulations of recombinant therapeutic proteins ». Current Opinion in Biotechnology 53 (octobre 2018) : 59–64. http://dx.doi.org/10.1016/j.copbio.2017.12.016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Tadros, Tharwat. « Interparticle interactions in concentrated suspensions and their bulk (Rheological) properties ». Advances in Colloid and Interface Science 168, no 1-2 (octobre 2011) : 263–77. http://dx.doi.org/10.1016/j.cis.2011.05.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Horn, F. M., W. Richtering, J. Bergenholtz, N. Willenbacher et N. J. Wagner. « Hydrodynamic and Colloidal Interactions in Concentrated Charge-Stabilized Polymer Dispersions ». Journal of Colloid and Interface Science 225, no 1 (mai 2000) : 166–78. http://dx.doi.org/10.1006/jcis.1999.6705.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Megías-Alguacil, D., J. D. G. Durán et A. V. Delgado. « Yield Stress of Concentrated Zirconia Suspensions : Correlation with Particle Interactions ». Journal of Colloid and Interface Science 231, no 1 (novembre 2000) : 74–83. http://dx.doi.org/10.1006/jcis.2000.7121.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Castronuovo, Giuseppina, Vittorio Elia, Anna Pierro et Filomena Velleca. « Chiral recognition in solution. Interactions of α-amino acids in concentrated aqueous solutions of urea or ethanol ». Canadian Journal of Chemistry 77, no 7 (1 juillet 1999) : 1218–24. http://dx.doi.org/10.1139/v99-126.

Texte intégral
Résumé :
Enthalpies of dilution of the L and D forms of glutamine, citrulline, and phenylalanine in concentrated aqueous solutions of urea or ethanol were measured calorimetrically at 298 K. Glycine, urea, formamide, and phenol were also studied under the same experimental conditions, to get information about the behaviour of the zwitterion and of the functional group in the side chain of the cited amino acids when the concentration of the cosolvent changes. The derived pairwise enthalpic interaction coefficients for the three amino acids were rationalized according to the preferential configuration model. Indications are that, in concentrated urea, the coefficients for citrulline and glutamine are determined mainly by the interactions between the cosolvent and the hydrophilic groups in the molecule of the amino acids. For phenylalanine, coefficients are less positive than in water, because the presence of urea, which solvates preferentially the zwitterions, attenuates hydrophobic interactions between the benzene rings. In ethanol, coefficients for the three amino acid become negative or more negative than in water, because in this medium hydrophilic interactions are enhanced. Chiral recognition, namely the difference in the values of homo- and heterochiral interaction coefficients, was detected only for phenylalanine in urea. Hence, the nature of the cosolvent, influencing differently hydrophilic and hydrophobic interactions, can lead to the detection of chiral recognition also for those systems that, as phenylalanine, do not present this effect in pure water.Key words: α-amino acids, excess functions, molecular interactions, preferential configuration.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Xu, Amy Y., Nicholas J. Clark, Joseph Pollastrini, Maribel Espinoza, Hyo-Jin Kim, Sekhar Kanapuram, Bruce Kerwin et al. « Effects of Monovalent Salt on Protein-Protein Interactions of Dilute and Concentrated Monoclonal Antibody Formulations ». Antibodies 11, no 2 (31 mars 2022) : 24. http://dx.doi.org/10.3390/antib11020024.

Texte intégral
Résumé :
In this study, we used sodium chloride (NaCl) to extensively modulate non-specific protein-protein interactions (PPI) of a humanized anti-streptavidin monoclonal antibody class 2 molecule (ASA-IgG2). The changes in PPI with varying NaCl (CNaCl) and monoclonal antibody (mAb) concentration (CmAb) were assessed using the diffusion interaction parameter kD and second virial coefficient B22 measured from solutions with low to moderate CmAb. The effective structure factor S(q)eff measured from concentrated mAb solutions using small-angle X-ray and neutron scattering (SAXS/SANS) was also used to characterize the PPI. Our results found that the nature of net PPI changed not only with CNaCl, but also with increasing CmAb. As a result, parameters measured from dilute and concentrated mAb samples could lead to different predictions on the stability of mAb formulations. We also compared experimentally determined viscosity results with those predicted from interaction parameters, including kD and S(q)eff. The lack of a clear correlation between interaction parameters and measured viscosity values indicates that the relationship between viscosity and PPI is concentration-dependent. Collectively, the behavior of flexible mAb molecules in concentrated solutions may not be correctly predicted using models where proteins are considered to be uniform colloid particles defined by parameters derived from low CmAb.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Beech, Iwona, Anna Otlewska, Justyna Skóra, Beata Gutarowska et Christine Gaylarde. « Interactions of fungi with titanium dioxide from paint coating ». Indoor and Built Environment 27, no 2 (28 septembre 2016) : 263–69. http://dx.doi.org/10.1177/1420326x16670716.

Texte intégral
Résumé :
Field emission scanning electron microscopy coupled with energy dispersive X-ray spectroscopy analysis of white-painted gypsum panels incubated for 11 months with either a consortium comprising several fungal species or their monocultures demonstrated that spores of Penicillium minioluteum concentrated titanium, a common white paint ingredient. The paint coating was severely degraded and the exposed underlying gypsum seen was to be contaminated with fungal spores. Ulocladium atrum, while growing well on consortium-inoculated panels over 12 weeks, failed to remain the principal colonizer after 11 months and did not concentrate minerals on its spores nor show visible degradation of the coating. When inoculated in pure culture, U. atrum failed to thrive on the panels, its concentration, measured as ergosterol, falling after 21 days. U. atrum, previously reported to be the major surviving fungus after the 12-week incubation based on the British Standard test BS3900 for fungal growth on paint, has discolouring but not degrading effects and probably grows on the paint coating at the expense of organic matter, including that originating from other fungal species. Ulocladium consortiale, a strain that grew on stored uninoculated panels, caused paint coating degradation visible under field emission scanning electron microscopy and detected as reduction in titanium in the underlying paint coating; however, it did not concentrate any particular elements on its spores.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Dupree, Jeffrey L., Jean-Antoine Girault et Brian Popko. « Axo-Glial Interactions Regulate the Localization of Axonal Paranodal Proteins ». Journal of Cell Biology 147, no 6 (13 décembre 1999) : 1145–52. http://dx.doi.org/10.1083/jcb.147.6.1145.

Texte intégral
Résumé :
Mice incapable of synthesizing the abundant galactolipids of myelin exhibit disrupted paranodal axo-glial interactions in the central and peripheral nervous systems. Using these mutants, we have analyzed the role that axo-glial interactions play in the establishment of axonal protein distribution in the region of the node of Ranvier. Whereas the clustering of the nodal proteins, sodium channels, ankyrinG, and neurofascin was only slightly affected, the distribution of potassium channels and paranodin, proteins that are normally concentrated in the regions juxtaposed to the node, was dramatically altered. The potassium channels, which are normally concentrated in the paranode/juxtaparanode, were not restricted to this region but were detected throughout the internode in the galactolipid-defi- cient mice. Paranodin/contactin-associated protein (Caspr), a paranodal protein that is a potential neuronal mediator of axon-myelin binding, was not concentrated in the paranodal regions but was diffusely distributed along the internodal regions. Collectively, these findings suggest that the myelin galactolipids are essential for the proper formation of axo-glial interactions and demonstrate that a disruption in these interactions results in profound abnormalities in the molecular organization of the paranodal axolemma.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Chao, Li-Fen, Su-Er Guo, Xaviera Xiao, Yueh-Yun Luo et Jeng Wang. « A Profile of Novice and Senior Nurses’ Communication Patterns during the Transition to Practice Period : An Application of the Roter Interaction Analysis System ». International Journal of Environmental Research and Public Health 18, no 20 (12 octobre 2021) : 10688. http://dx.doi.org/10.3390/ijerph182010688.

Texte intégral
Résumé :
Novice nurses’ successful transition to practice is impacted by their interactions with senior nurses. Ensuring that novice nurses are adequately supported during their transition to practice has wide-ranging and significant implications. The aim of this study is to explore the communication patterns between novice and senior nurses by applying an interaction analysis technique. Trimonthly onboarding evaluations between novice and senior nurses were recorded. The Roter Interaction Analysis System was adapted and deployed to identify communication patterns. In total, twenty-two interactions were analyzed. Senior nurses spoke more (64.5%). Task-focused exchange was predominant amongst senior (79.7%) and novice (59.5%) nurses. Senior nurses’ talk was concentrated in clusters of information-giving (45%) and advice or instructions (17.2%), while emotional expression (1.4%) and social talk (0.4%) were rare. Novice nurses’ talk was concentrated in clusters-information giving (57%) and positive talk (39.5%). The communication patterns between senior and novice nurses during the onboarding period indicate aspects of novice nurse transition that could be addressed, such as encouraging novice nurses to use these interactions to communicate more, or emphasizing the importance of social talk. These insights can be used to inform mentorship and preceptorship training to ensure that senior nurses are able to adequately support novice nurses through all parts of the transition to practice period.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Hansen, Mackenzie M., Richard W. Hartel et Yrjö H. Roos. « Encapsulant-bioactives interactions impact on physico-chemical properties of concentrated dispersions ». Journal of Food Engineering 302 (août 2021) : 110586. http://dx.doi.org/10.1016/j.jfoodeng.2021.110586.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Sellers, L. A., A. Allen, E. R. Morris et S. B. Ross-Murphy. « Submaxillary mucins. Intermolecular interactions and gel-forming potential of concentrated solutions ». Biochemical Journal 256, no 2 (1 décembre 1988) : 599–607. http://dx.doi.org/10.1042/bj2560599.

Texte intégral
Résumé :
The intermolecular interactions in concentrated solutions of pig submaxillary mucin (PSM) and sheep submaxillary mucin (SSM) were studied by mechanical spectroscopy. PSM and SSM were purified from detectable protein and nucleic acid by equilibrium centrifugation in a CsCl density gradient. PSM and SSM isolated in the presence of proteinase inhibitors showed distinct differences from preparations isolated in the presence of 0.2 M-NaCl alone, the latter having a carbohydrate and amino acid analysis similar to other preparations isolated by precipitation or ion-exchange techniques. Gel-filtration studies showed that preparations isolated in the presence of 0.2 M-NaCl alone were dissociated into smaller-sized glycoprotein units by 3.5 M-CsCl or 2.0 M-NaCl (SSM), pH 2.0 (PSM) or heating at 100 degrees C for 10 min (PSM and SSM). Preparations isolated in the presence of proteinase inhibitors were not dissociated by these treatments. Proteolysis fragmented all submaxillary mucin preparations into small glycopeptides of Mr 13,700 for PSM and of Mr 14,000 and 15,000 for SSM. PSM preparations when concentrated formed viscoelastic gels, as determined by mechanical spectroscopy. In contrast, SSM showed characteristics of a weak viscoelastic liquid under comparable conditions (coil overlap). PSM glycoprotein isolated in proteinase inhibitors formed weak viscoelastic gels at concentrations between 5 and 15 mg/ml. Preparations of PSM glycoprotein isolated in the presence of 0.2 M-NaCl (concentration 10-97 mg/ml) had the same overall mechanical gel structure as those preparations extracted in the presence of proteinase inhibitors. This gel structure was seen to collapse following proteolysis of both preparations or after acid treatment of the glycoprotein isolated in the presence of 0.2 M-NaCl, consistent with the breakdown in size of the polymeric glycoprotein. Treatment of PSM gel with 0.2 M-2-mercaptoethanol caused a surprising increase in gel strength, which was further markedly increased on removal of the reducing agent by dialysis. An association of reduced subunits of PSM was observed by gel filtration after removal of 0.2 M-2-mercaptoethanol. These results point to intermolecular disulphide exchange occurring on reduction of these PSM glycoprotein preparations. These results demonstrate that gel formation in PSM glycoprotein is similar to that for other gastrointestinal mucus glycoproteins from stomach to colon. Gel formation in PSM, as in other mucins, depends on polymerization of subunits.(ABSTRACT TRUNCATED AT 400 WORDS)
Styles APA, Harvard, Vancouver, ISO, etc.
46

Woldeyes, Mahlet A., Cesar Calero-Rubio, Eric M. Furst et Christopher J. Roberts. « Predicting Protein Interactions of Concentrated Globular Protein Solutions Using Colloidal Models ». Journal of Physical Chemistry B 121, no 18 (27 avril 2017) : 4756–67. http://dx.doi.org/10.1021/acs.jpcb.7b02183.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Nayeri, M., R. Karlsson et J. Bergenholtz. « Surfactant effects on colloidal interactions : Concentrated micellar solutions of nonionic surfactant ». Colloids and Surfaces A : Physicochemical and Engineering Aspects 368, no 1-3 (septembre 2010) : 84–90. http://dx.doi.org/10.1016/j.colsurfa.2010.07.016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Sachan, Ritesh, Mohammad W. Ullah, Matthew F. Chisholm, Jie Liu, Pengfei Zhai, Daniel Schauries, Patrick Kluth et al. « Radiation-induced extreme elastic and inelastic interactions in concentrated solid solutions ». Materials & ; Design 150 (juillet 2018) : 1–8. http://dx.doi.org/10.1016/j.matdes.2018.04.011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Giusteri, Giulio G. « The multiple nature of concentrated interactions in second-gradient dissipative liquids ». Zeitschrift für angewandte Mathematik und Physik 64, no 2 (19 mai 2012) : 371–80. http://dx.doi.org/10.1007/s00033-012-0229-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Evans, E., D. J. Klingenberg, W. Rawicz et F. Szoka. « Interactions between Polymer-Grafted Membranes in Concentrated Solutions of Free Polymer ». Langmuir 12, no 12 (janvier 1996) : 3031–37. http://dx.doi.org/10.1021/la9509559.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie