Thèses sur le sujet « Computer-based drug design »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 17 meilleures thèses pour votre recherche sur le sujet « Computer-based drug design ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
Nomkoko, Thembelani Edmund. « Computer-aided chemical speciation in metal-based drug design ». Doctoral thesis, University of Cape Town, 2002. http://hdl.handle.net/11427/21347.
Texte intégralKumari, Vandana. « Structure-Based Computer Aided Drug Design and Analysis for Different Disease Targets ». The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1311612599.
Texte intégralMahasenan, Kiran V. « Discovery of novel small molecule enzyme inhibitors and receptor modulators through structure-based computational design ». The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1332367560.
Texte intégralShi, Guqin. « Structure-based Computer-aided Drug Design and Analyses against Disease Target : Cytokine IL-6/IL-6R/GP130 Complex ». The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu151197172881965.
Texte intégralORSATO, ALEXANDRE. « Studies on tumor drug targeting ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2011. http://hdl.handle.net/10281/19200.
Texte intégralLundborg, Magnus. « Computer-Assisted Carbohydrate Structural Studies and Drug Discovery ». Doctoral thesis, Stockholms universitet, Institutionen för organisk kemi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-56411.
Texte intégralAt the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Submitted. Paper 5: Manuscript. Paper 6. Manuscript.
Craan, Tobias Friedrich [Verfasser], et Gerhard [Akademischer Betreuer] Klebe. « Fragment based Drug Discovery : Design and Validation of a Fragment Library ; Computer-based Fragment Screening and Fragment-to-Lead Expansion / Tobias Friedrich Craan. Betreuer : Gerhard Klebe ». Marburg : Philipps-Universität Marburg, 2011. http://d-nb.info/1013288807/34.
Texte intégralWard, D. J. « Further development of methods for the computer-aided design of neuropeptide-based drugs ». Thesis, University of Manchester, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.280534.
Texte intégralVankayala, Sai Lakshmana Kumar. « Computational Approaches for Structure Based Drug Design and Protein Structure-Function Prediction ». Scholar Commons, 2013. http://scholarcommons.usf.edu/etd/4601.
Texte intégralTripathi, Ashutosh. « DEVELOPMENT OF HINT BASED COMPUTATIONAL TOOLS FOR DRUG DESIGN : APPLICATIONS IN THE DESIGN AND DEVELOPMENT OF NOVEL ANTI-CANCER AGENTS ». VCU Scholars Compass, 2009. http://scholarscompass.vcu.edu/etd/1866.
Texte intégralHosseini, Seyed Ali. « Modeling protein dynamics and protein-drug interactions with Monte Carlo based techniques ». Doctoral thesis, Universitat de Barcelona, 2015. http://hdl.handle.net/10803/294730.
Texte intégralDurán, Alcaide Ángel. « Development of high-performance algorithms for a new generation of versatile molecular descriptors. The Pentacle software ». Doctoral thesis, Universitat Pompeu Fabra, 2010. http://hdl.handle.net/10803/7201.
Texte intégralEl trabajo que se presenta en esta tesis se ha centrado en el desarrollo de algoritmos de altas prestaciones para la obtención de una nueva generación de descriptores moleculares, con numerosas ventajas con respecto a sus predecesores, adecuados para diversas aplicaciones en el área del diseño de fármacos, y en su implementación en un programa científico de calidad comercial (Pentacle). Inicialmente se desarrolló un nuevo algoritmo de discretización de campos de interacción molecular (AMANDA) que permite extraer eficientemente las regiones de máximo interés. Este algoritmo fue incorporado en una nueva generación de descriptores moleculares independientes del alineamiento, denominados GRIND-2. La rapidez y eficiencia del nuevo algoritmo permitieron aplicar estos descriptores en cribados virtuales. Por último, se puso a punto un nuevo algoritmo de codificación independiente de alineamiento (CLACC) que permite obtener modelos cuantitativos de relación estructura-actividad con mejor capacidad predictiva y mucho más fáciles de interpretar que los obtenidos con otros métodos.
Lin, Fang-Yu, et 林芳宇. « Structure-Based Lead Optimization with Synthetic Accessibility in Computer-Aided Drug Design ». Thesis, 2011. http://ndltd.ncl.edu.tw/handle/76q9jk.
Texte intégralGainza, Cirauqui Pablo. « Computational Protein Design with Ensembles, Flexibility and Mathematical Guarantees, and its Application to Drug Resistance Prediction, and Antibody Design ». Diss., 2015. http://hdl.handle.net/10161/10468.
Texte intégralProteins are involved in all of life's processes and are also responsible for many diseases. Thus, engineering proteins to perform new tasks could revolutionize many areas of biomedical research. One promising technique for protein engineering is computational structure-based protein design (CSPD). CSPD algorithms search large protein conformational spaces to approximate biophysical quantities. In this dissertation we present new algorithms to realistically and accurately model how amino acid mutations change protein structure. These algorithms model continuous flexibility, protein ensembles and positive/negative design, while providing guarantees on the output. Using these algorithms and the OSPREY protein design program we design and apply protocols for three biomedically-relevant problems: (i) prediction of new drug resistance mutations in bacteria to a new preclinical antibiotic, (ii) the redesign of llama antibodies to potentially reduce their immunogenicity for use in preclinical monkey studies, and (iii) scaffold-based anti-HIV antibody design. Experimental validation performed by our collaborators confirmed the importance of the algorithms and protocols.
Dissertation
« A computational-based drug development framework ». 2011. http://library.cuhk.edu.hk/record=b5894618.
Texte intégralThesis (M.Phil.)--Chinese University of Hong Kong, 2011.
Includes bibliographical references (p. 188-200).
Abstracts in English and Chinese.
Abstract --- p.i
Acknowledgement --- p.vi
Chapter 1 --- Introduction --- p.1
Chapter 1.1 --- Obtain information on drug targets --- p.3
Chapter 1.2 --- Drug Design --- p.5
Chapter 1.3 --- Interface for interaction --- p.9
Chapter 1.4 --- Summary --- p.10
Chapter 2 --- Background Study --- p.12
Chapter 2.1 --- Protein Function Prediction --- p.16
Chapter 2.2 --- Drug Design --- p.37
Chapter 2.3 --- Visualisation and Interaction in Biomedic --- p.44
Chapter 3 --- Overview --- p.48
Chapter 3.1 --- Protein prediction using secondary structure analysis --- p.52
Chapter 3.2 --- Knowledge-driven ligand design --- p.55
Chapter 3.3 --- Interactive interface in virtual reality --- p.57
Chapter 4 --- Protein Function Prediction --- p.60
Chapter 4.1 --- Introduction --- p.61
Chapter 4.1.1 --- Motivation --- p.61
Chapter 4.1.2 --- Objective --- p.62
Chapter 4.1.3 --- Overview --- p.63
Chapter 4.2 --- Methods and Design --- p.66
Chapter 4.2.1 --- Feature Cell --- p.68
Chapter 4.2.2 --- Heterogeneous Vector --- p.71
Chapter 4.2.3 --- Feature Cell Similarity --- p.75
Chapter 4.2.4 --- Heterogeneous Vector Similarity --- p.79
Chapter 4.3 --- Experiments --- p.85
Chapter 4.3.1 --- Data Preparation --- p.85
Chapter 4.3.2 --- Experimental Methods --- p.87
Chapter 4.4 --- Results --- p.97
Chapter 4.4.1 --- Scalability --- p.97
Chapter 4.4.2 --- Cluster Quality --- p.99
Chapter 4.4.3 --- Classification Quality --- p.102
Chapter 4.5 --- Discussion --- p.103
Chapter 4.6 --- Conclusion --- p.104
Chapter 5 --- Drug Design --- p.106
Chapter 5.1 --- Introduction --- p.107
Chapter 5.1.1 --- Motivation --- p.107
Chapter 5.1.2 --- Objective --- p.109
Chapter 5.1.3 --- Overview --- p.109
Chapter 5.2 --- Methods --- p.111
Chapter 5.2.1 --- Fragment Joining --- p.115
Chapter 5.2.2 --- Genetic Operators --- p.116
Chapter 5.2.3 --- Post-Processing --- p.124
Chapter 5.3 --- Experiments --- p.128
Chapter 5.3.1 --- Data Preparation --- p.129
Chapter 5.3.2 --- Experimental Methods --- p.132
Chapter 5.4 --- Results --- p.134
Chapter 5.4.1 --- Binding Pose --- p.134
Chapter 5.4.2 --- Free Energy and Molecular Weight --- p.137
Chapter 5.4.3 --- Execution Time --- p.138
Chapter 5.4.4 --- Handling Phosphorus --- p.138
Chapter 5.5 --- Discussions --- p.139
Chapter 5.6 --- Conclusion --- p.140
Chapter 6 --- Interface in Virtual Reality --- p.142
Chapter 6.1 --- Introduction --- p.143
Chapter 6.1.1 --- Motivation --- p.143
Chapter 6.1.2 --- Objective --- p.145
Chapter 6.1.3 --- Overview --- p.145
Chapter 6.2 --- Methods and Design --- p.146
Chapter 6.2.1 --- Hybrid Drug Synthesis --- p.147
Chapter 6.2.2 --- Interactive Interface in Virtual Reality --- p.154
Chapter 6.3 --- Experiments and Results --- p.171
Chapter 6.3.1 --- Data Preparation --- p.171
Chapter 6.3.2 --- Experimental Settings --- p.172
Chapter 6.3.3 --- Results --- p.173
Chapter 6.4 --- Discussions --- p.176
Chapter 6.5 --- Conclusions --- p.179
Chapter 7 --- Conclusion --- p.180
A Glossary --- p.184
Bibliography --- p.188
« A computational framework for structure-based drug discovery with GPU acceleration ». 2011. http://library.cuhk.edu.hk/record=b5894765.
Texte intégralThesis (M.Phil.)--Chinese University of Hong Kong, 2011.
Includes bibliographical references (p. 132-156).
Abstracts in English and Chinese.
Abstract --- p.i
Abstract in Chinese --- p.iii
Acknowledgement --- p.iv
Chapter 1 --- Introduction --- p.1
Chapter 1.1 --- Motivation --- p.2
Chapter 1.2 --- Objective --- p.2
Chapter 1.3 --- Method --- p.3
Chapter 1.4 --- Outline --- p.4
Chapter 2 --- Background --- p.7
Chapter 2.1 --- Overview of the Pharmaceutical Industry --- p.7
Chapter 2.2 --- The Process of Modern Drug Discovery --- p.10
Chapter 2.2.1 --- Development of an Innovative Idea --- p.10
Chapter 2.2.2 --- Establishment of a Project Team --- p.11
Chapter 2.2.3 --- Target Identification --- p.11
Chapter 2.2.4 --- Hit Identification --- p.12
Chapter 2.2.5 --- Lead Identification --- p.13
Chapter 2.2.6 --- Lead Optimization --- p.14
Chapter 2.2.7 --- Clinical Trials --- p.14
Chapter 2.3 --- Drug Discovery via Computational Means --- p.15
Chapter 2.3.1 --- Structure-Based Virtual Screening --- p.16
Chapter 2.3.2 --- Computational Synthesis of Potent Ligands --- p.20
Chapter 2.3.3 --- General-Purpose Computing on GPU --- p.23
Chapter 3 --- Approximate Matching of DNA Patterns --- p.26
Chapter 3.1 --- Problem Definition --- p.27
Chapter 3.2 --- Motivation --- p.28
Chapter 3.3 --- Background --- p.30
Chapter 3.4 --- Method --- p.32
Chapter 3.4.1 --- Binary Representation --- p.32
Chapter 3.4.2 --- Agrep Algorithm --- p.32
Chapter 3.4.3 --- CUDA Implementation --- p.34
Chapter 3.5 --- Experiments and Results --- p.39
Chapter 3.6 --- Discussion --- p.44
Chapter 3.7 --- Availability --- p.45
Chapter 3.8 --- Conclusion --- p.47
Chapter 4 --- Structure-Based Virtual Screening --- p.50
Chapter 4.1 --- Problem Definition --- p.51
Chapter 4.2 --- Motivation --- p.52
Chapter 4.3 --- Medicinal Background --- p.52
Chapter 4.4 --- Computational Background --- p.59
Chapter 4.4.1 --- Scoring Function --- p.59
Chapter 4.4.2 --- Optimization Algorithm --- p.65
Chapter 4.5 --- Method --- p.68
Chapter 4.5.1 --- Scoring Function --- p.69
Chapter 4.5.2 --- Inactive Torsions --- p.72
Chapter 4.5.3 --- Optimization Algorithm --- p.73
Chapter 4.5.4 --- C++ Implementation Tricks --- p.74
Chapter 4.6 --- Data --- p.75
Chapter 4.6.1 --- Proteins --- p.75
Chapter 4.6.2 --- Ligands --- p.76
Chapter 4.7 --- Experiments and Results --- p.77
Chapter 4.7.1 --- Program Validation --- p.77
Chapter 4.7.2 --- Virtual Screening --- p.81
Chapter 4.8 --- Discussion --- p.89
Chapter 4.9 --- Availability --- p.90
Chapter 4.10 --- Conclusion --- p.91
Chapter 5 --- Computational Synthesis of Ligands --- p.92
Chapter 5.1 --- Problem Definition --- p.93
Chapter 5.2 --- Motivation --- p.93
Chapter 5.3 --- Background --- p.94
Chapter 5.4 --- Method --- p.97
Chapter 5.4.1 --- Selection --- p.99
Chapter 5.4.2 --- Mutation --- p.102
Chapter 5.4.3 --- Crossover --- p.102
Chapter 5.4.4 --- Split --- p.103
Chapter 5.4.5 --- Merging --- p.104
Chapter 5.4.6 --- Drug Likeness Testing --- p.104
Chapter 5.5 --- Data --- p.105
Chapter 5.5.1 --- Proteins --- p.105
Chapter 5.5.2 --- Initial Ligands --- p.107
Chapter 5.5.3 --- Fragments --- p.107
Chapter 5.6 --- Experiments and Results --- p.109
Chapter 5.6.1 --- Binding Conformation --- p.112
Chapter 5.6.2 --- Free Energy and Molecule Weight --- p.115
Chapter 5.6.3 --- Execution Time --- p.116
Chapter 5.6.4 --- Support for Phosphorus --- p.116
Chapter 5.7 --- Discussion --- p.120
Chapter 5.8 --- Availability --- p.123
Chapter 5.9 --- Conclusion --- p.123
Chapter 5.10 --- Personal Contribution --- p.124
Chapter 6 --- Conclusion --- p.125
Chapter 6.1 --- Conclusion --- p.125
Chapter 6.2 --- Future Work --- p.128
Chapter A --- Publications --- p.130
Chapter A.1 --- Conference Papers --- p.130
Chapter A.2 --- Journal Papers --- p.131
Bibliography --- p.132
O'Neill, Kale. « IMIDAZOLE-BASED MOLECULES AS PREVENTATIVE THERAPEUTICS FOR ISCHEMIC NEURONAL DEGRADATION ». 2013. http://hdl.handle.net/10222/38567.
Texte intégral