Littérature scientifique sur le sujet « Computational Criminology »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Computational Criminology ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Computational Criminology"
PRYKOLOTINA, Y. « CHALLENGES AND OPPORTUNITIES FOR CRIMINOLOGICAL RESEARCH IN A TRANSFORMING REALITY ». Vestnik of Polotsk State University Part D Economic and legal sciences 62, no 12 (14 novembre 2022) : 152–57. http://dx.doi.org/10.52928/2070-1632-2022-62-12-152-157.
Texte intégralTopalli, Volkan, Timothy Dickinson et Scott Jacques. « Learning from Criminals : Active Offender Research for Criminology ». Annual Review of Criminology 3, no 1 (13 janvier 2020) : 189–215. http://dx.doi.org/10.1146/annurev-criminol-032317-092005.
Texte intégralBerk, Richard. « How you can tell if the simulations in computational criminology are any good ». Journal of Experimental Criminology 4, no 3 (15 août 2008) : 289–308. http://dx.doi.org/10.1007/s11292-008-9053-5.
Texte intégralDyakov, V. G. « SOME LEGAL ASPECTS OF REGULATING OF RELATIONS ARISING IN THE USE OF POST-GENOMIC TECHNOLOGIES ». Courier of Kutafin Moscow State Law University (MSAL)), no 4 (22 juin 2020) : 108–13. http://dx.doi.org/10.17803/2311-5998.2020.68.4.108-113.
Texte intégralWilliams, Matthew L., et Pete Burnap. « Cyberhate on Social Media in the aftermath of Woolwich : A Case Study in Computational Criminology and Big Data ». British Journal of Criminology 56, no 2 (25 juin 2015) : 211–38. http://dx.doi.org/10.1093/bjc/azv059.
Texte intégralXiong, Yun, Yangyong Zhu, Philip Yu et Jian Pei. « Towards Cohesive Anomaly Mining ». Proceedings of the AAAI Conference on Artificial Intelligence 27, no 1 (30 juin 2013) : 984–90. http://dx.doi.org/10.1609/aaai.v27i1.8553.
Texte intégralSie Chiew, L., A. Shahabuddin et M. Y. Zainab. « A Review of Simulation and Application of Agent-Based Model Approaches ». Journal of Physics : Conference Series 2129, no 1 (1 décembre 2021) : 012053. http://dx.doi.org/10.1088/1742-6596/2129/1/012053.
Texte intégralKURSUN, OLCAY, ANNA KOUFAKOU, ABHIJIT WAKCHAURE, MICHAEL GEORGIOPOULOS, KENNETH REYNOLDS et RONALD EAGLIN. « ANSWER : APPROXIMATE NAME SEARCH WITH ERRORS IN LARGE DATABASES BY A NOVEL APPROACH BASED ON PREFIX-DICTIONARY ». International Journal on Artificial Intelligence Tools 15, no 05 (octobre 2006) : 839–48. http://dx.doi.org/10.1142/s0218213006002977.
Texte intégralRodríguez Oconitrillo, Luis Raúl Rodríguez, Juan José Vargas, Arturo Camacho, Álvaro Burgos et Juan Manuel Corchado. « RYEL : An Experimental Study in the Behavioral Response of Judges Using a Novel Technique for Acquiring Higher-Order Thinking Based on Explainable Artificial Intelligence and Case-Based Reasoning ». Electronics 10, no 12 (21 juin 2021) : 1500. http://dx.doi.org/10.3390/electronics10121500.
Texte intégralSukhodolov, Alexander, Sergey Ivantsov, Tatiana Molchanova et Boris Spasennikov. « Big Data as a Modern Criminological Method of Studying and Measuring Organized Crime ». Russian Journal of Criminology 13, no 5 (31 octobre 2019) : 718–26. http://dx.doi.org/10.17150/2500-4255.2019.13(5).718-726.
Texte intégralThèses sur le sujet "Computational Criminology"
Wang, Tong Ph D. Massachusetts Institute of Technology. « Finding patterns in features and observations : new machine learning models with applications in computational criminology, marketing, and medicine ». Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/107357.
Texte intégralCataloged from PDF version of thesis.
Includes bibliographical references (pages 173-180).
The revolution of "Big Data" has reached various fields like marketing, healthcare, and criminology, where domain experts wish to find and understand interesting patterns from data. This thesis studies patterns that are defined by subsets of observations or subsets of features. The first part of the thesis studies patterns defined by subsets of observations. We look at a specific type of pattern, crime series (a set of crimes committed by the same individual or group) and develop two pattern detection algorithms. The first method is a sequential pattern building algorithm called Series Finder, which resembles how crime analysts process information instinctively and grows a crime series starting from a couple of seed crimes. The second method is a subspace clustering with cluster-specific feature selection, which is supervised when learning similarity graphs in order to reduce computation. Both methods we propose achieved promising results on a decade's worth of crime pattern data collected by the Crime Analysis Unit of the Cambridge Police Department. The second part of the thesis studies patterns defined by subsets of features. We develop methods and theory for building Rule Set models with the hallmark of interpretability. Interpretability is inherent in using association rules to explain predicted results. We first design two methods for building rule sets for binary classification. The first method Bayesian Rule Set (BRS) uses a Bayesian framework with priors that favor small models. The Bayesian priors also bring significant computational benefits to MAP inferences by reducing the search space and restraining the sampling chain within appropriate regions. We apply BRS models to an in-vehicle recommender system data set we collected via Amazon Mechanical Turk to study the customers and contexts that would encourage acceptance of coupons. We develop another model Optimized Rule Set (ORS) using optimization methods to directly construct rule sets from data, without pre-mining rules or discretizing continuous attributes. As a main application of ORS, we build a diagnostic screening tool for obstructive sleep apnea trained on data provided by the Sleep Lab at Mass General Hospital. Our models achieve high accuracy with a substantial gain in interpretability over other methods. Lastly, we build a Causal Rule Set (CRS) model for causal analysis, to identify subgroups that can benefit from a treatment. CRS combines BRS and Bayesian Logistic Regression. We take advantage of different strategies in inference algorithm to speed up computation. Simulations and experiments show that distributing treatment according to CRS models enhances average treatment effect.
by Tong Wang.
Ph. D.
Livres sur le sujet "Computational Criminology"
The criminology of white-collar crime. New York, NY : Springer, 2009.
Trouver le texte intégralSubrahmanian, V. S. Handbook of Computational Approaches to Counterterrorism. New York, NY : Springer New York, 2013.
Trouver le texte intégralArgamon, Shlomo. Computational methods for counterterrorism. Dordrecht : Springer, 2009.
Trouver le texte intégralSimpson, Sally S., et David Weisburd. The Criminology of White-Collar Crime. Springer, 2010.
Trouver le texte intégralHoward, Newton, et Shlomo Argamon. Computational Methods for Counterterrorism. Springer, 2010.
Trouver le texte intégralHoward, Newton, et Shlomo Argamon. Computational Methods for Counterterrorism. Springer, 2009.
Trouver le texte intégralHoward, Newton, et Shlomo Argamon. Computational Methods for Counterterrorism. Springer, 2014.
Trouver le texte intégralBirks, Daniel. Computer Simulations. Sous la direction de Gerben J. N. Bruinsma et Shane D. Johnson. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780190279707.013.36.
Texte intégralChapitres de livres sur le sujet "Computational Criminology"
Kicsi, András, Péter Sánta, Dániel Horváth, Norbert Kőhegyi, Viktor Szvoreny, Veronika Vincze, Eszter Főző et László Vidács. « Computer-Aided Forensic Authorship Identification in Criminology ». Dans Computational Science and Its Applications – ICCSA 2022 Workshops, 576–92. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10548-7_42.
Texte intégral« Computational Criminology ». Dans Encyclopedia of Criminology and Criminal Justice, 505. New York, NY : Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-5690-2_100090.
Texte intégralNurunnabi, A. A. M., A. B. M. S. Ali, A. H. M. Rahmatullah Imon et Mohammed Nasser. « Outlier Detection in Logistic Regression ». Dans Multidisciplinary Computational Intelligence Techniques, 257–78. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-4666-1830-5.ch016.
Texte intégralActes de conférences sur le sujet "Computational Criminology"
Brantingham, Patricia L. « Computational Criminology ». Dans 2011 European Intelligence and Security Informatics Conference (EISIC). IEEE, 2011. http://dx.doi.org/10.1109/eisic.2011.79.
Texte intégralWeidong Tao. « Computational criminology and evolution mechanisms of social crime dynamic system ». Dans 2014 IEEE Workshop on Electronics, Computer and Applications (IWECA). IEEE, 2014. http://dx.doi.org/10.1109/iweca.2014.6845662.
Texte intégralPing He et Weidong Tao. « Computational criminology and non-equilibrium evolution mechanisms of social crime dynamic system ». Dans 2014 11th World Congress on Intelligent Control and Automation (WCICA). IEEE, 2014. http://dx.doi.org/10.1109/wcica.2014.7053692.
Texte intégral