Articles de revues sur le sujet « Component software »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Component software.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Component software ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

S, R. Chinnaiyan, et Somasundaram . « Reliability of Component Based Software with Similar Software Components � a Review ». i-manager's Journal on Software Engineering 5, no 2 (15 décembre 2010) : 44–49. http://dx.doi.org/10.26634/jse.5.2.1335.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kwong, C. K., L. F. Mu, J. F. Tang et X. G. Luo. « Optimization of software components selection for component-based software system development ». Computers & ; Industrial Engineering 58, no 4 (mai 2010) : 618–24. http://dx.doi.org/10.1016/j.cie.2010.01.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Lau, Kung-Kiu, et Zheng Wang. « Software Component Models ». IEEE Transactions on Software Engineering 33, no 10 (octobre 2007) : 709–24. http://dx.doi.org/10.1109/tse.2007.70726.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Goguen, Joseph, Doan Nguyen, José Meseguer, Luqi, Du Zhang et Valdis Berzins. « Software component search ». Journal of Systems Integration 6, no 1-2 (mars 1996) : 93–134. http://dx.doi.org/10.1007/bf02262753.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Morris, J., G. Lee, K. Parker, G. A. Bundell et Chiou Peng Lam. « Software component certification ». Computer 34, no 9 (2001) : 30–36. http://dx.doi.org/10.1109/2.947086.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Phanthanithilerd, Nattapon, et Nakornthip Prompoon. « Verifying Software Requirements Characteristics Based on Rules Defined from Software Component Relationships ». Lecture Notes on Software Engineering 4, no 1 (2016) : 27–33. http://dx.doi.org/10.7763/lnse.2016.v4.219.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Shah, Shubh. « Component Based Software Engineering ». International Journal for Research in Applied Science and Engineering Technology 9, no 8 (31 août 2021) : 1588–95. http://dx.doi.org/10.22214/ijraset.2021.37632.

Texte intégral
Résumé :
Abstract: The central idea of Component Based Engineering is to develop a system software by selecting the well defined software components not used often and assembling them with certain system architecture. Nowadays the software development pattern is far different from the earlier approach as many new concepts are being taken into consideration E.g. QA (QualityAssurance). This term paper includes a detailed description of all the current component based software techniques used as well as their advantages and disadvantages. We also address the quality assurance issue of component based software engineering.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Min, Byungho, et Vijay Varadharajan. « Rethinking Software Component Security : Software Component Level Integrity and Cross Verification ». Computer Journal 59, no 11 (10 août 2016) : 1735–48. http://dx.doi.org/10.1093/comjnl/bxw047.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Geum, Yeong-Uk, et Byeong-Seop Park. « Component Retrieval using Extended Software Component Descriptor ». KIPS Transactions:PartD 9D, no 3 (1 juin 2002) : 417–26. http://dx.doi.org/10.3745/kipstd.2002.9d.3.417.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Kaur, Arvinder, et Kulvinder Singh Mann. « Component Selection for Component Based Software Engineering ». International Journal of Computer Applications 2, no 1 (10 mai 2010) : 109–14. http://dx.doi.org/10.5120/604-854.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

KRISTIANSEN, MONICA, RUNE WINTHER et BENT NATVIG. « ON COMPONENT DEPENDENCIES IN COMPOUND SOFTWARE ». International Journal of Reliability, Quality and Safety Engineering 17, no 05 (octobre 2010) : 465–93. http://dx.doi.org/10.1142/s0218539310003895.

Texte intégral
Résumé :
Predicting the reliability of software systems based on a component approach is inherently difficult, in particular due to failure dependencies between the software components. Since it is practically difficult to include all component dependencies in a system's reliability calculation, a more viable approach would be to include only those dependencies that have a significant impact on the assessed system reliability. This paper starts out by defining two new concepts: data-serial and data-parallel components. Then, this paper illustrates how the components' marginal reliabilities put direct restrictions on the components' conditional probabilities, and proves that the degrees of freedom are much fewer than first anticipated when it comes to conditional probabilities. At last, a test system, consisting of five components, is investigated to identify possible rules for selecting the most important component dependencies. To do this, three different techniques are applied: (1) direct calculation, (2) Birnbaum's measure and (3) Principal Component Analysis (PCA). The results from the analyses clearly show that including partial dependency information may give substantial improvements in the reliability predictions, compared to assuming independence between all software components. The analyses also indicate that including only dependencies between data-parallel components may give predictions close to the system's true failure probability, as long as the dependency between the most unreliable components is included. Including only dependencies between data-serial components may however result in predictions even worse than by assuming independence between all software components.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Suranto, Beni. « Software Testing in Component-Based Software Engineering ». Advanced Science Letters 22, no 10 (1 octobre 2016) : 3110–14. http://dx.doi.org/10.1166/asl.2016.8004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

van der Hoek, Andr�, et Alexander L. Wolf. « Software release management for component-based software ». Software : Practice and Experience 33, no 1 (2002) : 77–98. http://dx.doi.org/10.1002/spe.496.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

GRUNDY, JOHN. « MULTI-PERSPECTIVE SPECIFICATION, DESIGN AND IMPLEMENTATION OF SOFTWARE COMPONENTS USING ASPECTS ». International Journal of Software Engineering and Knowledge Engineering 10, no 06 (décembre 2000) : 713–34. http://dx.doi.org/10.1142/s0218194000000341.

Texte intégral
Résumé :
Current approaches to component-based systems engineering tend to focus on low-level software component interface design and implementation. This often leads to the development of components whose services are hard to understand and combine, make too many assumptions about other components they can be composed with and component documentation that is too low-level. Aspect-oriented component engineering is a new methodology that uses a concept of different system capabilities ("aspects") to categorise and reason about inter-component provided and required services. It supports the identification, description and reasoning about high-level component functional and non-functional requirements grouped by different systemic aspects, and the refinement of these requirements into design-level software component service implementation aspects. Aspect information is used to help implement better component interfaces and to encode knowledge of a component's capabilities for other components, developers and end users to access. We describe and illustrate the use of aspect-oriented component engineering techniques and notations to specify, design and implement software components, report on some basic tool support, and our experiences using the approach to build some complex, component-based software systems.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Nierstrasz, Oscar, Simon Gibbs et Dennis Tsichritzis. « Component-oriented software development ». Communications of the ACM 35, no 9 (1 septembre 1992) : 160–65. http://dx.doi.org/10.1145/130994.131005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Crnkovic, Ivica, Stig Larsson et Judith Stafford. « Component-based software engineering ». ACM SIGSOFT Software Engineering Notes 27, no 3 (mai 2002) : 47–50. http://dx.doi.org/10.1145/638574.638587.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Voas, J. « Composing software component "ilities" ». IEEE Software 18, no 4 (juillet 2001) : 16–17. http://dx.doi.org/10.1109/ms.2001.936211.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Boegh, J. « Certifying software component attributes ». IEEE Software 23, no 3 (mai 2006) : 74–81. http://dx.doi.org/10.1109/ms.2006.69.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Kozaczynski, W., et G. Booch. « Component-Based Software Engineering ». IEEE Software 15, no 5 (septembre 1998) : 34–36. http://dx.doi.org/10.1109/ms.1998.714621.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Kaur, Arvinder, et Kulvinder Singh Mann. « Component Based Software Engineering ». International Journal of Computer Applications 2, no 1 (10 mai 2010) : 105–8. http://dx.doi.org/10.5120/605-855.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Lee, Janghyuk, Se-Joon Hong, Yeong-Wha Sawng et Ju Seong Kim. « Perceived Subjective Features of Software Components : Consumer Behavior in a Software Component Market ». ETRI Journal 31, no 3 (5 juin 2009) : 304–14. http://dx.doi.org/10.4218/etrij.09.0108.0643.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Arató, Péter, Zoltán Ádám Mann et András Orbán. « Extending component-based design with hardware components ». Science of Computer Programming 56, no 1-2 (avril 2005) : 23–39. http://dx.doi.org/10.1016/j.scico.2004.11.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Kumar, Gottipalla Ashok. « Comparison Of Conventional Approach with Component Based Software Development ». International Journal of Scientific Research 2, no 2 (1 juin 2012) : 141–42. http://dx.doi.org/10.15373/22778179/feb2013/47.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Val'kevich, T. A., Yu V. Kapitonova, A. A. Letichevskii et N. M. Mishchenko. « Paradigm of software component dictionaries for software development ». Cybernetics and Systems Analysis 32, no 6 (novembre 1996) : 766–76. http://dx.doi.org/10.1007/bf02366858.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Gulia, Preeti, et Palak Palak. « Component Based Software Development Life Cycle Models : A Comparative Review ». Oriental journal of computer science and technology 10, no 2 (3 juin 2017) : 467–73. http://dx.doi.org/10.13005/ojcst/10.02.30.

Texte intégral
Résumé :
The development of high quality software is the need of current technology driven world. Component Based Software Engineering (CBSE) has provided a cost effective, fast and modular approach for developing complex software. CBSE is mainly based on the concept of reusability. Apart from these CBSE has several advantages as well as challenges which are summarized in this paper. Large and complex software development requires management of reusable components and can be selected from component repository and assembled to obtain a working application. Development of components and their assembly is different from traditional softwares which leads to the need of new development paradigms for Component Based Systems (CBS). Software development life cycle (SDLC) provides planned and systematic arrangement of activities to be carried out to deliver high quality products within time and budget. This paper presents a comparative study of component based software development life cycle models with their strengths and weaknesses.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Yang, Fan, Z. H. Dong et Jue Wang. « Method and Software Generation Platform ». Applied Mechanics and Materials 743 (mars 2015) : 563–67. http://dx.doi.org/10.4028/www.scientific.net/amm.743.563.

Texte intégral
Résumé :
This paper proposed a method and software generation platform, which can automatically generate C++ codes of math equation, and package the software and method into a standard component. Also, the system integrates different types of methods in the unified information processing system with standard interface and format. Users can create new component and design experimental task with existing components. The system is quite convenient for developers to develop new component, easy for administrators to manage all existing component, and simple for users to design and operate experimental task.
Styles APA, Harvard, Vancouver, ISO, etc.
27

SITARAMAN, MURALI. « PERFORMANCE-PARAMETERIZED REUSABLE SOFTWARE COMPONENTS ». International Journal of Software Engineering and Knowledge Engineering 02, no 04 (décembre 1992) : 567–87. http://dx.doi.org/10.1142/s0218194092000269.

Texte intégral
Résumé :
Current programming languages support construction of parameterized reusable components that can be adapted and composed to create new functionality. For widespread reuse, software components must also have readily adaptable performance. This paper introduces language mechanisms for creating such performance-parameterized reusable software components and for controlling their performance by "plugging in" appropriate constituent components. A key element of the proposed approach is that it provides inexpensive performance tuning. It permits performance of a tunable component to be changed without modifications to the functionality of the component or its clients; in principle, without the need for re-compilation or re-validation of functionality.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Kaur, Amandeep, Puninder Kaur et Payal Kaushal. « Maintainability Procedure in Component-Based Software ». Journal of Computational and Theoretical Nanoscience 17, no 11 (1 novembre 2020) : 5156–61. http://dx.doi.org/10.1166/jctn.2020.9357.

Texte intégral
Résumé :
Changes in service requirement of software demands consequent changes in its maintainability. An important aspect of changes is that it affects various factors in Component Based Software Engineering which is reuse-based approach to define, implement, and integrate different components into system. Variety of Component-based software frameworks for distributed, real-time and embedded systems in Component-oriented programming are existing for specific domains in order to deal with different requirements. Functionalities under component based system affecting multiple factors in a distributed environment. It is therefore more than necessary to consider various quality attributes like reliability, maintainability, interpretability and reusability for determining quality assurance. The article presents an approach to enhance the promptness of system maintainability in case of changes in component based software.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Kotonya, G., et N. Maiden. « Editorial : Component-based software engineering ». IEE Proceedings - Software 147, no 6 (2000) : 201. http://dx.doi.org/10.1049/ip-sen:20000937.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Alvaro, Alexandre, Eduardo Santana de Almeida et Silvio Romero de Lemos Meira. « A software component quality framework ». ACM SIGSOFT Software Engineering Notes 35, no 1 (25 janvier 2010) : 1–18. http://dx.doi.org/10.1145/1668862.1668863.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Vouillon, Jérôme, et Roberto Di Cosmo. « On software component co-installability ». ACM Transactions on Software Engineering and Methodology 22, no 4 (octobre 2013) : 1–35. http://dx.doi.org/10.1145/2522920.2522927.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Gunner, G. « Review : Component-Based Software Engineering ». Computer Bulletin 40, no 6 (1 novembre 1998) : 31. http://dx.doi.org/10.1093/combul/40.6.31-a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Kaur, Kuljit, et Hardeep Singh. « Evaluating an evolving software component ». ACM SIGSOFT Software Engineering Notes 34, no 4 (6 juillet 2009) : 1–4. http://dx.doi.org/10.1145/1543405.1543415.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Chavez, A., C. Tornabene et G. Wiederhold. « Software component licensing : a primer ». IEEE Software 15, no 5 (1998) : 47–53. http://dx.doi.org/10.1109/52.714771.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Sitariman, Marulli, et Bruce Weide. « Component-based software using RESOLVE ». ACM SIGSOFT Software Engineering Notes 19, no 4 (octobre 1994) : 21–22. http://dx.doi.org/10.1145/190679.199221.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Wooley, Bruce A. « Explanation component of software system ». XRDS : Crossroads, The ACM Magazine for Students 5, no 1 (septembre 1998) : 24–28. http://dx.doi.org/10.1145/332925.332933.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Ratneshwer et A. K. Tripathi. « Dependence analysis of software component ». ACM SIGSOFT Software Engineering Notes 35, no 4 (20 juillet 2010) : 1–9. http://dx.doi.org/10.1145/1811226.1811237.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Baker, Nigel, Jean-Marie LeGoff et Ian Willers. « Panel session on component software ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 389, no 1-2 (avril 1997) : 22–25. http://dx.doi.org/10.1016/s0168-9002(97)00033-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Broy, Manfred, Anton Deimel, Juergen Henn, Kai Koskimies, František Plášil, Gustav Pomberger, Wolfgang Pree, Michael Stal et Clemens Szyperski. « What characterizes a (software) component ? » Software - Concepts & ; Tools 19, no 1 (mars 1998) : 49–56. http://dx.doi.org/10.1007/s003780050007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Hair, Abdellatif. « A New Software Component Approach ». International Journal of Computer Applications 135, no 2 (17 février 2016) : 1–7. http://dx.doi.org/10.5120/ijca2016908265.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Adler, R. M. « Emerging standards for component software ». Computer 28, no 3 (mars 1995) : 68–77. http://dx.doi.org/10.1109/2.366164.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Crnkovic, Ivica, Heinz W. Schmidt, Judith Stafford et Kurt Wallnau. « Automated Component-Based Software Engineering ». Journal of Systems and Software 74, no 1 (janvier 2005) : 1–3. http://dx.doi.org/10.1016/j.jss.2003.11.016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Ando, Noriaki, Shinji Kurihara, Geoffrey Biggs, Takeshi Sakamoto, Hiroyuki Nakamoto et Tetsuo Kotoku. « Software Deployment Infrastructure for Component Based RT-Systems ». Journal of Robotics and Mechatronics 23, no 3 (20 juin 2011) : 350–59. http://dx.doi.org/10.20965/jrm.2011.p0350.

Texte intégral
Résumé :
In component-based Robotic Technology (RT) systems, launching the system involves installing component binary files to the target computers, instantiation of components, and establishing connections between components. In order to operate RT systems with many CPU nodes effectively, the deployment features provided by the middleware are important. Deployment means system life-cycle management, including software installation, configuring components, and launching components. In this paper, we describe deployment tools for RT systems. The component deployment functionality is realized based on the OMG Robotic Technology Component (RTC) specification [1]. Description formats are defined, a service interface is designed and tools are implemented using the OpenRTM-aist that is the implementation of the OMG RTC specification. The implemented deployment infrastructure is evaluated and discussed, and issues and potential future work are considered.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Fatima, Fariha, Saqib Ali et Muhammad Usman Ashraf. « Risk Reduction Activities Identification in Software Component Integration for Component Based Software Development (CBSD) ». International Journal of Modern Education and Computer Science 9, no 4 (8 avril 2017) : 19–31. http://dx.doi.org/10.5815/ijmecs.2017.04.03.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

RAVICHANDRAN, K. S., K. R. SEKAR et P. SURESH. « A NOVEL APPROACH FOR OPTIMAL GROUPING OF REUSABLE SOFTWARE COMPONENTS FOR COMPONENT BASED SOFTWARE DEVELOPMENT SYSTEMS ». International Journal of Software Engineering and Knowledge Engineering 23, no 07 (septembre 2013) : 895–912. http://dx.doi.org/10.1142/s0218194013500253.

Texte intégral
Résumé :
Component Based Software (CBS) development is the assembling of already developed components and preparing for integration. For the last two decades, researchers have been concentrating much on CBS both in industry and academia, because CBS helps in the reduction of manpower, cost, software development time and better system maintainability. The selection of the best component from the large collection of components is a difficult task and only few researchers have addressed this issue so far by using optimization techniques. In this paper, we propose a new methodology to group the components effectively, based on the software architecture, by using fuzzy concepts. Again, Fuzzy Clustering Technique (FCT) is introduced to find the optimal grouping between the reusable components and the software architectures. The proposed model has the following advantages: (i) the proposed Fuzzy Weighted Relational Coefficient (FWRC) is used to measure the fuzzy relational value of the suggested 9 component parameters; (ii) A mathematical model is established to remove all less utility leveled components before grouping; (iii) FCT performs on newly developed similarity coefficient formula; (iv) Zero — One programming (optimization) technique is used to optimize the group; (v) Fuzzy Weighted Approach is used to find the dominant component among the component grouping, and (vi) Optimal grouping is achieved by the property, namely, maximizing the cohesion and minimizing the coupling when compared to other methods. Finally, the validation of the derived methodology is verified with sample Business Enterprise Applications.
Styles APA, Harvard, Vancouver, ISO, etc.
46

Lavrischeva, E. M., O. A. Slabospitskaya, A. Yu Stenyashin et A. L. Kolesnyk. « Object-component development of changeable software systems ». PROBLEMS IN PROGRAMMING, no 1 (janvier 2016) : 003–16. http://dx.doi.org/10.15407/pp2016.01.003.

Texte intégral
Résumé :
Complementary limitations of both Software Product Lines industrial technologies and Lavrischeva – Grishenrko object-component method concerning changeable software development are elicited such as the lack of formalisms for program assets building and ill predictability of this build features. To cope with the limitations universal Model of Software Family Variant Features is proposed expanding its tradi-tional feature model for basic development artifacts. For assets being considered as reusable Components final Changeable Software Object-Component Model is elaborated including the universal model above being adjusted as Software Variability Object-Component Model. The Algebra is depicted for the operations of both the Components configuring and data types transforming over their interaction within changeable software system. These operations are proposed to incorporate into the target process for Changeable Software Family proactive and informed Variability management being represented with its technological chart. The process proposed composes the functions for variability Planning, Implementing and Control as well as Family model/consist Evolving up to the Control results. The functions listed are performed within common information environment structured accordingly to Variant Features Model or its object-component adjustment. Trial software tool for configuring Components in the above process is probed. The usage is depicted of both the framework proposed and this tool over technological lines being implemented in Software Systems Institute of NAS of Ukraine Instrumental-technological complex for changeable software configuring from the components.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Sam, Khin Moe. « Unit Testing to Support Reusable for Component-Based Software Engineering ». International Journal of Trend in Scientific Research and Development Volume-3, Issue-2 (28 février 2019) : 638–40. http://dx.doi.org/10.31142/ijtsrd21458.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Iqbal, Nayyar, et Jun Sang. « Fuzzy Logic Testing Approach for Measuring Software Completeness ». Symmetry 13, no 4 (5 avril 2021) : 604. http://dx.doi.org/10.3390/sym13040604.

Texte intégral
Résumé :
Due to advancements in science and technology, software is constantly evolving. To adapt to newly demanded requirements in a piece of software, software components are modified or developed. Measuring software completeness has been a challenging task for software companies. The uncertain and imprecise intrinsic relationships within software components have been unaddressed by researchers during the validation process. In this study, we introduced a new fuzzy logic testing approach for measuring the completeness of software. We measured the fuzzy membership value for each software component by a fuzzy logic testing approach called the fuzzy test. For each software component, the system response was tested by identifying which software components in the system required changes. Based on the measured fuzzy membership values for each software component, software completeness was calculated. The introduced approach scales the software completeness between zero and one. A software component with a complete membership value indicates that the software component does not require any modification. A non-membership value specifies that the existing software component is no longer required in the system or that a new software component is required to replace it. The partial membership value specifies that the software component requires few new functionalities according to the new software requirements. Software with a partial membership value requires partial restructuring and design recovery of its components. Symmetric design of software components reduces the complexity in the restructuring of software during modification. In the study, we showed that by using the introduced approach, high-quality software that is faultless, reliable, easily maintained, efficient, and cost-effective can be developed.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Agarwal, Jyoti, Sanjay Kumar Dubey et Rajdev Tiwari. « Usability evaluation of component based software system using software metrics ». Intelligent Decision Technologies 14, no 3 (29 septembre 2020) : 281–89. http://dx.doi.org/10.3233/idt-190021.

Texte intégral
Résumé :
Component Based Software Engineering (CBSE) provides a way to create a new Component Based Software System (CBSS) by utilizing the existing components. The primary reason for that is to minimize the software development time, cost and effort. CBSS also increases the component reusability. Due to these advantages, software industries are working on CBSS and continuously trying to provide quality product. Usability is one of the major quality factors for CBSS. It should be measured before delivering the software product to the customer, so that if there are any usability flaws, it can be removed by software development team. In this paper, work has been done to evaluate the usability of CBSS based on major usability sub-factors (learnability, operability, understandability and configurability). For this purpose, firstly software metrics are identified for each usability sub-factor and the value of each sub-factor is evaluated for a component based software project. Secondly, overall usability of the software project is evaluated by using the calculated value of each usability sub-factor. Usability for the same project was also evaluated using Fuzzy approach in MATLAB to validate the experimental work of this research paper. It was identified that the value of usability obtained from software metrics and fuzzy model was very similar. This research work will be useful for the software developer to evaluate the usability of any CBSS and will also help them to compare different version of any CBSS in term of their usability.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Jiang, Long Qiang, Hai Tao Wang et Yi Ye. « Research on Component-Based Software Reuse Technology ». Advanced Materials Research 403-408 (novembre 2011) : 2688–91. http://dx.doi.org/10.4028/www.scientific.net/amr.403-408.2688.

Texte intégral
Résumé :
The software reuse technology based on components is a solution which can avoid reusable work for software development. The component is among the core technologies of component-based software development, is has become one of the focus in the field of software reuse. This paper presents fundamental concepts and key techniques of software reuse. The emphasis of the paper presents the model of component.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie