Sommaire
Littérature scientifique sur le sujet « Complexe SWItch/Sucrose Non-Fermentable »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Complexe SWItch/Sucrose Non-Fermentable ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Complexe SWItch/Sucrose Non-Fermentable"
Choi, Sung Kyung, Myoung Jun Kim et Jueng Soo You. « SMARCB1 Acts as a Quiescent Gatekeeper for Cell Cycle and Immune Response in Human Cells ». International Journal of Molecular Sciences 21, no 11 (1 juin 2020) : 3969. http://dx.doi.org/10.3390/ijms21113969.
Texte intégralNguyen, Thinh T., Joanne G. A. Savory, Travis Brooke-Bisschop, Randy Ringuette, Tanya Foley, Bradley L. Hess, Kirk J. Mulatz, Laura Trinkle-Mulcahy et David Lohnes. « Cdx2 Regulates Gene Expression through Recruitment of Brg1-associated Switch-Sucrose Non-fermentable (SWI-SNF) Chromatin Remodeling Activity ». Journal of Biological Chemistry 292, no 8 (12 janvier 2017) : 3389–99. http://dx.doi.org/10.1074/jbc.m116.752774.
Texte intégralLiu, Hongyu, Yang Zhao, Guizhen Zhao, Yongjie Deng, Y. Eugene Chen et Jifeng Zhang. « SWI/SNF Complex in Vascular Smooth Muscle Cells and Its Implications in Cardiovascular Pathologies ». Cells 13, no 2 (16 janvier 2024) : 168. http://dx.doi.org/10.3390/cells13020168.
Texte intégralDel Savio, Elisa, et Roberta Maestro. « Beyond SMARCB1 Loss : Recent Insights into the Pathobiology of Epithelioid Sarcoma ». Cells 11, no 17 (24 août 2022) : 2626. http://dx.doi.org/10.3390/cells11172626.
Texte intégralWanior, Marek, Andreas Krämer, Stefan Knapp et Andreas C. Joerger. « Exploiting vulnerabilities of SWI/SNF chromatin remodelling complexes for cancer therapy ». Oncogene 40, no 21 (3 mai 2021) : 3637–54. http://dx.doi.org/10.1038/s41388-021-01781-x.
Texte intégralSoto-Castillo, Juan José, Lucía Llavata-Marti, Roser Fort-Culillas, Pablo Andreu-Cobo, Rafael Moreno, Carles Codony, Xavier García del Muro, Ramon Alemany, Josep M. Piulats et Juan Martin-Liberal. « SWI/SNF Complex Alterations in Tumors with Rhabdoid Features : Novel Therapeutic Approaches and Opportunities for Adoptive Cell Therapy ». International Journal of Molecular Sciences 24, no 13 (6 juillet 2023) : 11143. http://dx.doi.org/10.3390/ijms241311143.
Texte intégralHasan, Nesrin, et Nita Ahuja. « The Emerging Roles of ATP-Dependent Chromatin Remodeling Complexes in Pancreatic Cancer ». Cancers 11, no 12 (25 novembre 2019) : 1859. http://dx.doi.org/10.3390/cancers11121859.
Texte intégralCollingwood, TN, FD Urnov et AP Wolffe. « Nuclear receptors : coactivators, corepressors and chromatin remodeling in the control of transcription ». Journal of Molecular Endocrinology 23, no 3 (1 décembre 1999) : 255–75. http://dx.doi.org/10.1677/jme.0.0230255.
Texte intégralPadilla-Benavides, Teresita, Pablo Reyes-Gutierrez et Anthony N. Imbalzano. « Regulation of the Mammalian SWI/SNF Family of Chromatin Remodeling Enzymes by Phosphorylation during Myogenesis ». Biology 9, no 7 (3 juillet 2020) : 152. http://dx.doi.org/10.3390/biology9070152.
Texte intégralWu, Shuai, Nail Fatkhutdinov, Leah Rosin, Jennifer M. Luppino, Osamu Iwasaki, Hideki Tanizawa, Hsin-Yao Tang et al. « ARID1A spatially partitions interphase chromosomes ». Science Advances 5, no 5 (mai 2019) : eaaw5294. http://dx.doi.org/10.1126/sciadv.aaw5294.
Texte intégralThèses sur le sujet "Complexe SWItch/Sucrose Non-Fermentable"
Bretones, Santamarina Jorge. « Integrated multiomic analysis, synthetic lethality inference and network pharmacology to identify SWI/SNF subunit-specific pathway alterations and targetable vulnerabilities ». Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASL049.
Texte intégralNowadays the cancer community agrees on the need for patient-tailored diagnostics and therapies, which calls for the design of translational studies combining experimental and statistical approaches. Current challenges include the validation of preclinical experimental models and their multi-omics profiling, along with the design of dedicated bioinformatics and mathematical pipelines (i.e. dimension reduction, multi-omics integration, mechanism-based digital twins) for identifying patient-specific optimal drug combinations.To address these challenges, we designed bioinformatics and statistical approaches to analyze various large-scale data types and integrate them to identify targetable vulnerabilities in cancer cell lines. We developed our pipeline in the context of alterations of the SWItch Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex. SWI/SNF mutations occur in ~20% of all cancers, but such malignancies still lack efficient therapies. We leveraged a panel of HAP1 isogenic cell lines mutated for SWI/SNF subunits or other epigenetic enzymes for which transcriptomics, proteomics and drug screening data were available.We worked on four methodological axes, the first one being the design of an optimized pathway enrichment pipeline to detect pathways differentially activated in the mutants against the wild-type. We developed a pruning algorithm to reduce gene and pathway redundancy in the Reactome database and improve the interpretability of the results. We evidenced the bad performance of first-generation enrichment methods and proposed to combine the topology-based method ROntoTools with pre-ranked GSEA to increase enrichment performance .Secondly, we analyzed drug screens, processed drug-gene interaction databases to obtain genes and pathways targeted by effective drugs and integrated them with proteomics enrichment results to infer targetable vulnerabilities selectively harming mutant cell lines. The validation of potential targets was achieved using a novel method detecting synthetic lethality from transcriptomics and CRISPR data of independent cancer cell lines in DepMap, run for each studied epigenetic enzyme. Finally, to further inform multi-agent therapy optimization, we designed a first digital representation of targetable pathways for SMARCA4-mutated tumors by building a directed protein-protein interaction network connecting targets inferred from multi-omics HAP1 and DepMap CRISPR analyses. We used the OmniPath database to retrieve direct protein interactions and added the connecting neighboring genes with the Neko algorithm.These methodological developments were applied to the HAP1 panel datasets. Using our optimized enrichment pipeline, we identified Metabolism of proteins as the most frequently dysregulated pathway category in SWI/SNF-KO lines. Next, the drug screening analysis revealed cytotoxic and epigenetic drugs selectively targeting SWI/SNF mutants, including CBP/EP300 or mitochondrial respiration inhibitors, also identified as synthetic lethal by our Depmap CRISPR analysis. Importantly, we validated these findings in two independent isogenic cancer-relevant experimental models. The Depmap CRISPR analysis was also used in a separate project to identify synthetic lethal interactions in glioblastoma, which proved relevant for patient-derived cell lines and are being validated in dedicated drug screens.To sum up, we developed computational methods to integrate multi-omics expression data with drug screening and CRISPR assays and identified new vulnerabilities in SWI/SNF mutants which were experimentally revalidated. This study was limited to the identification of effective single agents. As a future direction, we propose to design mathematical models representing targetable protein networks using differential equations and their use in numerical optimization and machine learning procedures as a key tool to investigate concomitant druggable targets and personalize drug combinations