Littérature scientifique sur le sujet « Complex Structural Models »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Complex Structural Models ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Complex Structural Models"
Dupont, B., E. Pillet et S. Cogan. « Superelement Verification in Complex Structural Models ». Shock and Vibration 15, no 3-4 (2008) : 369–81. http://dx.doi.org/10.1155/2008/237124.
Texte intégralCapiluppi, Marta, et Marcel Staroswiecki. « FROM STRUCTURAL TO FUNCTIONAL MODELS OF COMPLEX SYSTEMS ». IFAC Proceedings Volumes 39, no 13 (2006) : 1276–81. http://dx.doi.org/10.3182/20060829-4-cn-2909.00213.
Texte intégralDUCROT, ARNAUD. « STRUCTURAL STABILITY OF COMBUSTION MODELS WITH COMPLEX CHEMISTRY ». Mathematical Models and Methods in Applied Sciences 16, no 06 (juin 2006) : 793–817. http://dx.doi.org/10.1142/s0218202506001352.
Texte intégralPreacher, Kristopher J. « Testing Complex Correlational Hypotheses With Structural Equation Models ». Structural Equation Modeling : A Multidisciplinary Journal 13, no 4 (décembre 2006) : 520–43. http://dx.doi.org/10.1207/s15328007sem1304_2.
Texte intégralWang, Chao, Li Wan, Tifan Xiong, Yuanlong Xie, Shuting Wang, Jianwan Ding et Liping Chen. « Hierarchical Structural Analysis Method for Complex Equation-Oriented Models ». Mathematics 9, no 21 (21 octobre 2021) : 2660. http://dx.doi.org/10.3390/math9212660.
Texte intégralL.V., Ponomarova. « STRUCTURAL MODELS OF COMPLEX TERMS IN INSTITUTIONALLY LEGAL DISCOURSE ». South archive (philological sciences), no 86 (29 juin 2021) : 34–37. http://dx.doi.org/10.32999/ksu2663-2691/2021-86-5.
Texte intégralVILLACAMPA, Y., et J. L. USO-DOMENECH. « MATHEMATICAL MODELS OF COMPLEX STRUCTURAL SYSTEMS. A LINGUISTIC VISION ». International Journal of General Systems 28, no 1 (juin 1999) : 37–52. http://dx.doi.org/10.1080/03081079908935228.
Texte intégralAutin, Ludovic, Mårten Steen, Björn Dahlbäck et Bruno O. Villoutreix. « Proposed structural models of the prothrombinase (FXa-FVa) complex ». Proteins : Structure, Function, and Bioinformatics 63, no 3 (25 janvier 2006) : 440–50. http://dx.doi.org/10.1002/prot.20848.
Texte intégralWilson, Sandra Jo, Joshua R. Polanin et Mark W. Lipsey. « Fitting meta-analytic structural equation models with complex datasets ». Research Synthesis Methods 7, no 2 (juin 2016) : 121–39. http://dx.doi.org/10.1002/jrsm.1199.
Texte intégralUrbina, Angel, et Thomas Paez. « Probabilistic Numerical Analysis of Large, Complex, Structural Dynamic System Models ». Journal of the IEST 46, no 1 (14 septembre 2003) : 119–27. http://dx.doi.org/10.17764/jiet.46.1.p3k33743858u56hx.
Texte intégralThèses sur le sujet "Complex Structural Models"
PAFUNDI, PIA CLARA. « SPECIFICATION AND ESTIMATION OF COMPLEX STRUCTURAL MODELS WITH COVARIATE EFFECTS ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/54182.
Texte intégralAbdullah, Aslam. « Quantifying guidelines and criteria for using turbulence models in complex flows ». Thesis, Cranfield University, 2011. http://dspace.lib.cranfield.ac.uk/handle/1826/7454.
Texte intégralChauvet, Jocelyn. « Introducing complex dependency structures into supervised components-based models ». Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS008/document.
Texte intégralHigh redundancy of explanatory variables results in identification troubles and a severe lack of stability of regression model estimates. Even when estimation is possible, a consequence is the near-impossibility to interpret the results. It is then necessary to combine its likelihood with an extra-criterion regularising the estimates. In the wake of PLS regression, the regularising strategy considered in this thesis is based on extracting supervised components. Such orthogonal components must not only capture the structural information of the explanatory variables, but also predict as well as possible the response variables, which can be of various types (continuous or discrete, quantitative, ordinal or nominal). Regression on supervised components was developed for multivariate GLMs, but so far concerned models with independent observations.However, in many situations, the observations are grouped. We propose an extension of the method to multivariate GLMMs, in which within-group correlations are modelled with random effects. At each step of Schall's algorithm for GLMM estimation, we regularise the model by extracting components that maximise a trade-off between goodness-of-fit and structural relevance. Compared to penalty-based regularisation methods such as ridge or LASSO, we show on simulated data that our method not only reveals the important explanatory dimensions for all responses, but often gives a better prediction too. The method is also assessed on real data.We finally develop regularisation methods in the specific context of panel data (involving repeated measures on several individuals at the same time-points). Two random effects are introduced: the first one models the dependence of measures related to the same individual, while the second one models a time-specific effect (thus having a certain inertia) shared by all the individuals. For Gaussian responses, we first propose an EM algorithm to maximise the likelihood penalised by the L2-norm of the regression coefficients. Then, we propose an alternative which rather gives a bonus to the "strongest" directions in the explanatory subspace. An extension of these approaches is also proposed for non-Gaussian data, and comparative tests are carried out on Poisson data
Hang, Huajiang Engineering & Information Technology Australian Defence Force Academy UNSW. « Prediction of the effects of distributed structural modification on the dynamic response of structures ». Awarded by:University of New South Wales - Australian Defence Force Academy. Engineering & ; Information Technology, 2009. http://handle.unsw.edu.au/1959.4/44275.
Texte intégralHinojosa-Prieto, Hector R. « Tectonothermal history of the La Noria-Las Calaveras region, Acatlán Complex, southern Mexico implications for Paleozoic tectonic models / ». Ohio : Ohio University, 2006. http://www.ohiolink.edu/etd/view.cgi?ohiou1151434573.
Texte intégralGrundmeier, Alexander Peter [Verfasser]. « The water-oxidizing manganese complex of oxygenic photosynthesis : structural models based on X-ray absorption spectroscopy / Alexander Peter Grundmeier ». Berlin : Freie Universität Berlin, 2012. http://d-nb.info/1026883717/34.
Texte intégralAmeen, Masood, et Mini Jacob. « Complexity in Projects : A Study of Practitioners’ Understanding of Complexity in Relation to ExistingTheoretical Models ». Thesis, Umeå University, Umeå School of Business, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-18376.
Texte intégralIn the last three decades, complexity theory has gained a lot of importance in several scientific disciplines like astronomy, geology, chemistry etc. It has slowly extended its usage in the field of project management. While trying to understand the managerial demands of modern day projects and the different situations faced in projects, the term ‘complexity’ is progressively becoming a benchmark term. In the recent past some of the challenging projects that have been completed are the Heathrow Terminal 5 and the construction of venues for the Beijing Olympics. But can we call these projects complex?It is probably too simplistic to classify projects as complex or non-complex. What is particularly important is to identify the source of the complexity, the level and also the implications of the complexity. Several academicians have studied the different dimensions and established different classifications of complexity. These are put together into models of complexity.But is this classification well-grounded in reality? This is what we aim to explore through this research. The specific questions that we wish to explore by conducting this research are:
- How does the understanding of project complexity in actuality conform to the theoretical complexity models?
In an effort to answer the primary question, our study will also throw some light on factors of complexity across different sectors. We hope that this distinction will pave way for further research within these sectors. This now brings us to our sub-question:- How do the factors that contribute to complexity compare across different sectors?At the outset of this research, the literature on complexity was reviewed. An attempt was made to understand what complexity means with a focus on the field of project management.It was observed that there is a new wave of thinking in this field and a camp which believes that regular project management tools and techniques cannot be used for complex projects.
This has drawn several academicians to generate models of complexity based on various factors. In this research we have focused on some important models like that of Turner and Cochrane, Ralph Stacey, Terry Williams, Kahane and Remington and Pollack. We have tried to see if any of these models fit in with how practitioners understand complexity.To find out how practitioners comprehend complexity, we followed a grounded theory approach and also used quantitative methods to supplement the results in accordance in a mixed methodology. Semi-structured interviews were carried out with nine project managers from different sectors and different geographical locations. The interviews were analyzed and the data was broken down to different categories referred to as open coding where labelling was done. This was followed by Axial coding where we describe the properties and build relations between these categories. The final stage is selective coding where the emerged theory is integrated and refined.Quantitative data was collected through a short questionnaire which listed out some factors which could cause or lead to complexity in projects. A total of 29 responses were obtained for the questionnaires. By analyzing this data we were able to determine the factors that project managers thought caused complexity in projects. A new dimension was also added by analyzing it sector-wise. Since we collected data from two different sources, via interviews and through questionnaires, it gave us the opportunity to triangulate the findings. Wesincerely hope that this piece of work will pave way for future research on similar areas like models of complexity and perception of complexity in project management
Estienne, Jacques. « Des halogènes dans les édifices moléculaires étioniques : études cristallographiques, corrélations structure-réactivité, structure-conductivité, modèles structuraux ». Aix-Marseille 1, 1986. http://www.theses.fr/1986AIX11001.
Texte intégralSun, Daning. « Structured policies for complex production and inventory models ». Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/31002.
Texte intégralBusiness, Sauder School of
Graduate
Sele, Céleste. « Caractérisation structurale des interactions moléculaires au sein du complexe de réplication du virus de la vaccine ». Thesis, Grenoble, 2011. http://www.theses.fr/2011GRENV085.
Texte intégralVaccinia virus (VACV) is a large DNA virus, prototypic virus of the orthopoxvirus genus, and shows over 97% amino acid sequence identity with the variola virus (VARV), a major human pathogene eradicated in 1977 thanks to the universal vaccination program with VACV. As this vaccination was halted in the 1980s, a significant percentage of the world population is now immunologically naïve, which makes the VARV a potent bioterrorist agent. Vaccination against smallpox may result in a variety of complications, particularly in immunologically depressed patients, and the available antiviral therapeutics are rare, which enhance the need of new molecules. The replication complex appears as an ideal target because of its importance in the viral cycle and its cytoplasmic localization, more accessible for the molecules. We have focused our study on 4 essential proteins of this complex: the DNA polymerase E9, the processivity factor composed by the A20 protein and the uracil DNA glycosylase D4 and the helicase-primase D5. We could express these recombinant proteins, alone and in complex, and characterize them biochemically and biophysically. Using the SAXS technic, we finally reached a low resolution model of the A20D4E9 complex which allow us to propose the first structural model of the vaccinia virus replication fork
Livres sur le sujet "Complex Structural Models"
Simple models of complex nuclei : The shell model and interacting boson model. Chur, Switzerland : Harwood Academic Publishers, 1993.
Trouver le texte intégralG, Chen. Fundamentals of complex networks : Models, structures, and dynamics. Singapore : John Wiley & Sons Inc., 2015.
Trouver le texte intégralLaeven, Luc. Complex ownership structures and corporate valuations. Cambridge, Mass : National Bureau of Economic Research, 2006.
Trouver le texte intégralLaeven, Luc. Complex ownership structures and corporate valuations. [Washington, D.C.] : International Monetary Fund, Research Dept., 2007.
Trouver le texte intégralPierre, Antoine Jean, et Workshop on Geometric Methods in Physics (13th : 1994 : Białowieża, Województwo Podlaskie, Poland), dir. Quantization, coherent states, and complex structures. New York : Plenum, 1996.
Trouver le texte intégralComplex manifolds and deformation of complex structures. New York : Springer-Verlag, 1986.
Trouver le texte intégralComplex manifolds and deformation of complex structures. New York : Springer-Verlag, 1986.
Trouver le texte intégral1946-, Eve Raymond A., Horsfall Sara et Lee Mary E, dir. Chaos, complexity, and sociology : Myths, models, and theories. Thousand Oaks, Calif : Sage Publications, 1997.
Trouver le texte intégralKuijlaars, Arno B. J., 1963- et Mo Man Yue, dir. The Hermitian two matrix model with an even quartic potential. Providence, R.I : American Mathematical Society, 2011.
Trouver le texte intégralBasic structures of function field arithmetic. Berlin : Springer, 1996.
Trouver le texte intégralChapitres de livres sur le sujet "Complex Structural Models"
Stronge, William James, et Tongxi Yu. « More Complex Configurations ». Dans Dynamic Models for Structural Plasticity, 191–258. London : Springer London, 1993. http://dx.doi.org/10.1007/978-1-4471-0397-4_6.
Texte intégralBelov, Mikhail V., et Dmitry A. Novikov. « Structural Models of Complex Activity ». Dans Studies in Systems, Decision and Control, 61–83. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48610-5_3.
Texte intégralWu, Pan, et Xin M. Tu. « Structural Functional Response Models for Complex Intervention Trials ». Dans Statistical Causal Inferences and Their Applications in Public Health Research, 217–38. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41259-7_12.
Texte intégralUrbina, Angel, et Sankaran Mahadevan. « Quantification of Aleatoric and Epistemic Uncertainty in Computational Models of Complex Systems ». Dans Structural Dynamics, Volume 3, 519–35. New York, NY : Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9834-7_47.
Texte intégralKimberlain, Jon, Valerie Hayez, Jie Feng et Mark Mirgon. « Material Models for Structural Silicone Sealant in Complex Loading ». Dans Durability of Building and Construction Sealants and Adhesives : 7th Volume, 76–95. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959 : ASTM International, 2022. http://dx.doi.org/10.1520/stp163320200073.
Texte intégralOuisse, M., et E. Foltête. « Identification of Reduced Models from Optimal Complex Eigenvectors in Structural Dynamics and Vibroacoustics ». Dans Vibration and Structural Acoustics Analysis, 303–27. Dordrecht : Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1703-9_11.
Texte intégralLauro, C., D. Nappo, M. G. Grassia et R. Miele. « Method of Quantification for Qualitative Variables and their Use in the Structural Equations Models ». Dans Classification and Multivariate Analysis for Complex Data Structures, 325–33. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13312-1_34.
Texte intégralAllen, David T., et Dimitris Liguras. « Structural Models of Catalytic Cracking Chemistry : A Case Study of a Group Contribution Approach to Lumped Kinetic Modeling ». Dans Chemical Reactions in Complex Mixtures, 101–25. Boston, MA : Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-6530-3_6.
Texte intégralHair, Joseph F., G. Tomas M. Hult, Christian M. Ringle, Marko Sarstedt, Nicholas P. Danks et Soumya Ray. « An Introduction to Structural Equation Modeling ». Dans Classroom Companion : Business, 1–29. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80519-7_1.
Texte intégralGrundmeier, Alexander, Paola Loja, Michael Haumann et Holger Dau. « The Manganese Complex of Photosystem II : Extended-Range EXAFS Data and Specific Structural Models for Four S-States ». Dans Photosynthesis. Energy from the Sun, 405–8. Dordrecht : Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6709-9_91.
Texte intégralActes de conférences sur le sujet "Complex Structural Models"
Mikheev, M. Yu, T. V. Zhashkova, A. B. Shcherban, A. K. Grishko et I. M. Rybakov. « Generalized structural models of complex distributed objects ». Dans 2016 IEEE East-West Design & Test Symposium (EWDTS). IEEE, 2016. http://dx.doi.org/10.1109/ewdts.2016.7807742.
Texte intégralGordon, Robert, et Joseph Hollkamp. « Coupled Structural-Acoustic Response Prediction with Complex Modal Models ». Dans 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-2307.
Texte intégralWang, X. Q., Ricardo A. Perez et Marc P. Mignolet. « Nonlinear Reduced Order Modeling of Complex Wing Models ». Dans 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia : American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-1520.
Texte intégralRussell, Steven G. « Complex Potential Stress Field Models for Damage Evaluation in Composites ». Dans 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia : American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-1472.
Texte intégralSouche, L., F. Lepage et G. Iskenova. « Volume Based Modeling - Automated Construction of Complex Structural Models ». Dans 75th EAGE Conference and Exhibition incorporating SPE EUROPEC 2013. Netherlands : EAGE Publications BV, 2013. http://dx.doi.org/10.3997/2214-4609.20130037.
Texte intégralGorbachov, Valeriy, Abdulrahman Kataeba Batiaa, Olha Ponomarenko et Yuri Romanenkov. « Formal transformations of structural models of complex network systems ». Dans 2018 IEEE 9th International Conference on Dependable Systems, Services and Technologies (DESSERT). IEEE, 2018. http://dx.doi.org/10.1109/dessert.2018.8409175.
Texte intégralHollkamp, Joseph J., et Patrick J. O'Hara. « Using Complex Variables to Estimate the Derivatives of Nonlinear Reduced-Order Models ». Dans 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia : American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-1707.
Texte intégralCapra, Lorenzo. « Applying Structural Techniques for Efficient Analysis of Complex SWN Models ». Dans Proceedings. Eighth International Workshop on Discrete Event Systems. IEEE, 2006. http://dx.doi.org/10.1109/wodes.2006.382529.
Texte intégralJensen, H. A., A. Muñoz et E. Millas. « THE USE OF MODEL REDUCTION TECHNIQUES IN COMPLEX SIMULATION-BASED PROBLEMS INVOLVING FINITE ELEMENT MODELS ». Dans 5th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering Methods in Structural Dynamics and Earthquake Engineering. Athens : Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2015. http://dx.doi.org/10.7712/120115.3376.1367.
Texte intégralNazarevich, S. A. « BIHEVIORISTIC MODELS OF ORGANIZATIONAL AND TECHNOLOGICAL RELIABILITY ». Dans MODELING AND SITUATIONAL MANAGEMENT THE QUALITY OF COMPLEX SYSTEMS. Saint Petersburg State University of Aerospace Instrumentation, 2021. http://dx.doi.org/10.31799/978-5-8088-1558-2-2021-2-143-145.
Texte intégralRapports d'organisations sur le sujet "Complex Structural Models"
Wozniakowska, P., D. W. Eaton, C. Deblonde, A. Mort et O. H. Ardakani. Identification of regional structural corridors in the Montney play using trend surface analysis combined with geophysical imaging, British Columbia and Alberta. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328850.
Texte intégralRiveros, Guillermo, Felipe Acosta, Reena Patel et Wayne Hodo. Computational mechanics of the paddlefish rostrum. Engineer Research and Development Center (U.S.), septembre 2021. http://dx.doi.org/10.21079/11681/41860.
Texte intégralAnsari, S. M., E. M. Schetselaar et J. A. Craven. Three-dimensional magnetotelluric modelling of the Lalor volcanogenic massive-sulfide deposit, Manitoba. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/328003.
Texte intégralNechaev, V., Володимир Миколайович Соловйов et A. Nagibas. Complex economic systems structural organization modelling. Politecnico di Torino, 2006. http://dx.doi.org/10.31812/0564/1118.
Texte intégralMakarenko, S. I., et K. V. Ushanev. Program imitating model of formation of a traffic of complex structure. Science and Innovation Center Publishing House, 2017. http://dx.doi.org/10.12731/ofernio.2014.20514.
Texte intégralMontville, Thomas J., et Roni Shapira. Molecular Engineering of Pediocin A to Establish Structure/Function Relationships for Mechanistic Control of Foodborne Pathogens. United States Department of Agriculture, août 1993. http://dx.doi.org/10.32747/1993.7568088.bard.
Texte intégralBaader, Franz, et Felix Distel. A finite basis for the set of EL-implications holding in a finite model. Technische Universität Dresden, 2007. http://dx.doi.org/10.25368/2022.160.
Texte intégralRadnell, David. A Complex Structure on the Moduli Space of Rigged Riemann Surfaces. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-5-2006-82-94.
Texte intégralBalat, Jorge, Juan Esteban Carranza, Juan David Martin et Álvaro Riascos. El efecto de cambios en la regulación del mercado mayorista de electricidad en Colombia en un modelo estructural de subastas complejas. Banco de la República, octobre 2022. http://dx.doi.org/10.32468/be.1211.
Texte intégralBaumann, William T., Richard L. Moose, Hugh F. VanLandigham, Mauro J. Caputi, Stephen H. Jones et Bhaskar Gorti. Active Control of Generalized Complex Modal Structures in a Stochastic Environment. Fort Belvoir, VA : Defense Technical Information Center, mai 1992. http://dx.doi.org/10.21236/ada251910.
Texte intégral