Littérature scientifique sur le sujet « Complex engineering systems »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Complex engineering systems ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Complex engineering systems"

1

Ottino, J. M. « Engineering complex systems ». Nature 427, no 6973 (janvier 2004) : 399. http://dx.doi.org/10.1038/427399a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Abbott, Russ. « Complex systems engineering : Putting complex systems to work ». Complexity 13, no 2 (2007) : 10–11. http://dx.doi.org/10.1002/cplx.20197.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Ahram, Tareq Z. « ENGINEERING SUSTAINABLE COMPLEX SYSTEMS ». Management and Production Engineering Review 4, no 4 (1 décembre 2013) : 4–14. http://dx.doi.org/10.2478/mper-2013-0032.

Texte intégral
Résumé :
Abstract Given the most competitive nature of global business environment, effective engineering innovation is a critical requirement for all levels of system lifecycle development. The society and community expectations have increased beyond environmental short term impacts to global long term sustainability approach. Sustainability and engineering competence skills are extremely important due to a general shortage of engineering talent and the need for mobility of highly trained professionals [1]. Engineering sustainable complex systems is extremely important in view of the general shortage of resources and talents. Engineers implement new technologies and processes to avoid the negative environmental, societal and economic impacts. Systems thinking help engineers and designers address sustainable development issues with a global focus using leadership and excellence. This paper introduces the Systems Engineering (SE) methodology for designing complex and more sustainable business and industrial solutions, with emphasis on engineering excellence and leadership as key drivers for business sustainability. The considerable advancements achieved in complex systems engineering indicate that the adaptation of sustainable SE to business needs can lead to highly sophisticated yet widely useable collaborative applications, which will ensure the sustainability of limited resources such as energy and clean water. The SE design approach proves critical in maintaining skills needed in future capable workforce. Two factors emerged to have the greatest impact on the competitiveness and sustainability of complex systems and these were: improving skills and performance in engineering and design, and adopting SE and human systems integration (HSI) methodology to support sustainability in systems development. Additionally, this paper provides a case study for the application of SE and HSI methodology for engineering sustainable and complex systems.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Broggi, A., M. Hinchey et A. D. Stoyen. « Engineering complex computer systems ». Microprocessors and Microsystems 23, no 3 (octobre 1999) : 123–24. http://dx.doi.org/10.1016/s0141-9331(99)00034-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Bujara, Matthias, et Sven Panke. « Engineering in complex systems ». Current Opinion in Biotechnology 21, no 5 (octobre 2010) : 586–91. http://dx.doi.org/10.1016/j.copbio.2010.07.007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Rouse, W. B. « Engineering complex systems : implications for research in systems engineering ». IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews) 33, no 2 (mai 2003) : 154–56. http://dx.doi.org/10.1109/tsmcc.2003.813335.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

White, Brian E. « On Principles of Complex Systems Engineering-Complex Systems Made Simple ». INCOSE International Symposium 21, no 1 (juin 2011) : 1590–844. http://dx.doi.org/10.1002/j.2334-5837.2011.tb01296.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

White, Brian. « On Principles of Complex Systems Engineering-Complex Systems Made Simple ». INCOSE International Symposium 23, no 1 (juin 2013) : 1636. http://dx.doi.org/10.1002/j.2334-5837.2013.tb03124.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Sheard, Sarah A., et Ali Mostashari. « Principles of complex systems for systems engineering ». Systems Engineering 12, no 4 (septembre 2009) : 295–311. http://dx.doi.org/10.1002/sys.20124.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Li, Ta-Hsin, Tailen Hsing et D. M. Titterington. « Complex Stochastic Systems and Engineering ». Technometrics 39, no 3 (août 1997) : 336. http://dx.doi.org/10.2307/1271142.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Complex engineering systems"

1

Venkatesh, Saligrama Ramaswamy. « System-identification for complex-systems ». Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/10440.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Magee, Christopher, et Weck Olivier de. « Complex System Classification ». International Council On Systems Engineering (INCOSE), 2004. http://hdl.handle.net/1721.1/6753.

Texte intégral
Résumé :
The use of terms such as “Engineering Systems”, “System of systems” and others have been coming into greater use over the past decade to denote systems of importance but with implied higher complexity than for the term systems alone. This paper searches for a useful taxonomy or classification scheme for complex Systems. There are two aspects to this problem: 1) distinguishing between Engineering Systems (the term we use) and other Systems, and 2) differentiating among Engineering Systems. Engineering Systems are found to be differentiated from other complex systems by being human-designed and having both significant human complexity as well as significant technical complexity. As far as differentiating among various engineering systems, it is suggested that functional type is the most useful attribute for classification differentiation. Information, energy, value and mass acted upon by various processes are the foundation concepts underlying the technical types.
Engineering Systems Division and Mechanical Engineering, Center for Innovation in Product Development
Styles APA, Harvard, Vancouver, ISO, etc.
3

Case, Denise Marie. « Engineering complex systems with multigroup agents ». Diss., Kansas State University, 2015. http://hdl.handle.net/2097/19045.

Texte intégral
Résumé :
Doctor of Philosophy
Computing and Information Sciences
Scott A. DeLoach
As sensor prices drop and computing devices continue to become more compact and powerful, computing capabilities are being embedded throughout our physical environment. Connecting these devices in cyber-physical systems (CPS) enables applications with significant societal impact and economic benefit. However, engineering CPS poses modeling, architecture, and engineering challenges and, to fully realize the desired benefits, many outstanding challenges must be addressed. For the cyber parts of CPS, two decades of work in the design of autonomous agents and multiagent systems (MAS) offers design principles for distributed intelligent systems and formalizations for agent-oriented software engineering (AOSE). MAS foundations offer a natural fit for enabling distributed interacting devices. In some cases, complex control structures such as holarchies can be advantageous. These can motivate complex organizational strategies when implementing such systems with a MAS, and some designs may require agents to act in multiple groups simultaneously. Such agents must be able to manage their multiple associations and assignments in a consistent and unambiguous way. This thesis shows how designing agents as systems of intelligent subagents offers a reusable and practical approach to designing complex systems. It presents a set of flexible, reusable components developed for OBAA++, an organization-based architecture for single-group MAS, and shows how these components were used to develop the Adaptive Architecture for Systems of Intelligent Systems (AASIS) to enable multigroup agents suitable for complex, multigroup MAS. This work illustrates the reusability and flexibility of the approach by using AASIS to simulate a CPS for an intelligent power distribution system (IPDS) operating two multigroup MAS concurrently: one providing continuous voltage control and a second conducting discrete power auctions near sources of distributed generation.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Devereaux, Jaime E. (Jaime Erin). « Obsolescence : a systems engineering and management approach for complex systems ». Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/59233.

Texte intégral
Résumé :
Thesis (S.M. in System Design and Management)--Massachusetts Institute of Technology, Engineering Systems Division, Technology and Policy Program, 2010.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 79-81).
Obsolescence mitigation is an increasingly important aspect of large systems development & maintenance that has often only been considered once obsolescence is imminent. For long lifecycle systems, this has become a major concern as the lifecycles of the components that are encompassed within these systems are often far shorter - up to ten times shorter - than the overall system lifecycle. Many defense systems can be characterized in this manner and therefore require obsolescence mitigation approaches to ensure the continuing ability for the system to perform and evolve. Current system-level obsolescence mitigation practices make recommendations for designing new systems to slow the onset of obsolescence and make the system more flexible when change for obsolescence is required. However, currently fielded systems were often not designed with this in mind. Other obsolescence mitigation techniques focus only on the approach to mitigating component-level obsolescence locally without examining the impact of the change on the system as a whole. This thesis combines the recommended approaches for obsolescence mitigation, the experience and lessons learned for obsolescence mitigation on a real-world case study system gained from interviews with key subject matter experts, along with systems engineering techniques for dealing with engineering change in systems to develop a robust systems engineering and management approach for obsolescence in large complex systems. The thesis provides the reader with a flow chart and a clustered DSM of the tasks along with a checklist that could be used with this obsolescence engineering and management approach.
by Jaime E. Devereaux.
S.M.in System Design and Management
Styles APA, Harvard, Vancouver, ISO, etc.
5

Mwanga, Alifas Yeko. « Reliability modelling of complex systems ». Thesis, Pretoria : [s.n.], 2006. http://upetd.up.ac.za/thesis/available/etd-12142006-121528.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Holbrook, A. E. K. « Design assistance for complex engineering assemblies ». Thesis, Cranfield University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303118.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Abdullah, Rudwan Ali Abolgasim. « Intelligent methods for complex systems control engineering ». Thesis, University of Stirling, 2007. http://hdl.handle.net/1893/257.

Texte intégral
Résumé :
This thesis proposes an intelligent multiple-controller framework for complex systems that incorporates a fuzzy logic based switching and tuning supervisor along with a neural network based generalized learning model (GLM). The framework is designed for adaptive control of both Single-Input Single-Output (SISO) and Multi-Input Multi-Output (MIMO) complex systems. The proposed methodology provides the designer with an automated choice of using either: a conventional Proportional-Integral-Derivative (PID) controller, or a PID structure based (simultaneous) Pole and Zero Placement controller. The switching decisions between the two nonlinear fixed structure controllers is made on the basis of the required performance measure using the fuzzy logic based supervisor operating at the highest level of the system. The fuzzy supervisor is also employed to tune the parameters of the multiple-controller online in order to achieve the desired system performance. The GLM for modelling complex systems assumes that the plant is represented by an equivalent model consisting of a linear time-varying sub-model plus a learning nonlinear sub-model based on Radial Basis Function (RBF) neural network. The proposed control design brings together the dominant advantages of PID controllers (such as simplicity in structure and implementation) and the desirable attributes of Pole and Zero Placement controllers (such as stable set-point tracking and ease of parameters’ tuning). Simulation experiments using real-world nonlinear SISO and MIMO plant models, including realistic nonlinear vehicle models, demonstrate the effectiveness of the intelligent multiple-controller with respect to tracking set-point changes, achieve desired speed of response, prevent system output overshooting and maintain minimum variance input and output signals, whilst penalising excessive control actions.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Wang, Cheng 1971. « Parametric uncertainty analysis for complex engineering systems ». Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/9507.

Texte intégral
Résumé :
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 1999.
Includes bibliographical references (p. 259-275).
With the rapid advancement of computational science, modeling and simulation have become standard methods to study the behavior of complex systems. As scientists and engineers try to capture more detail, the models become more complex. Given that there are inevitable uncertainties entering at every stage of a model's life cycle, the challenge is to identify those components that contribute most to uncertainties in the predictions. This thesis presents new methodologies for allowing direct incorporation of uncertainty into the model formulation and for identifying the relative importance of different parameters. The basis of these methods is the deterministic equivalent modeling method (DEMM), which applies polynomial chaos expansions and the probabilistic collocation approach to transform the stochastic model into a deterministic equivalent model. By transforming the model the task of determining the probability density function of the model response surface is greatly simplified. In order to advance the representation method of parametric uncertainty. a theoretical study of polynomial chaos representation of uncertain parameters has been performed and an Adomian polynomial expansion for functions of random variables has been developed. While DEMM is applied to various engineering systems to study the propagation of uncertainty in complex models, a systematic framework is introduced to quantitatively assess the effect of uncertain parameters in stochastic optimization problems for chemical product and process design. Furthermore, parametric uncertainty analysis techniques for discrete and correlated random variables have been developed such that the deterministic equivalent modeling method can be applied to a broader range of engineering problems. As a result of these developments, uncertainty analysis can now be performed 2 to 3 orders faster than conventional methods such as Monte Carlo. Examples of models in various engineering systems suggest both the accuracy and the practicality of the new framework for parametric uncertainty analysis established in this thesis.
by Cheng Wang.
Ph.D.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Zils, Jude. « A Systems Engineering Approach to Complex Tool Realization ». Digital Commons at Loyola Marymount University and Loyola Law School, 2010. https://digitalcommons.lmu.edu/etd/448.

Texte intégral
Résumé :
Tooling is defined as the work performed by a tool. In the context of industrial production tooling takes many forms from a simple drill bar to highly complex assembly jigs. In all cases the tooling exists to assist in the accurate and precise performance of work on engineering products. The engineering product therefore defines and constrains the form and function of the associated tooling. The process of defining, fabricating, and verifying tooling is often subject to individual, business, or government perspectives and processes. Relying on individual experience and inadequate processes often results in frequent rework, product design interface issues, and a lack of historical perspective and traceability on the tooling design. The Systems Engineering process, which is already valued as a necessary component of complex system definition, will be beneficial when adapted and applied to the process of defining, fabricating, and verifying tooling. The methodical processes and tools associated with Systems Engineering will embed the tooling process in the product requirement and design process and encourage increased interaction and concurrent engineering practices. A tooling process, based on System Engineering principles combined with best industry practices, that is ingrained in the product life cycle and which thoroughly documents associated technical and producibility requirements will reduce the issues currently prevalent in complex tooling realization.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Cheng, Fook-Chun. « Object-oriented data structures in complex engineering systems ». Thesis, London South Bank University, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.280785.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Complex engineering systems"

1

Ng, Irene, Glenn Parry, Peter Wild, Duncan McFarlane et Paul Tasker, dir. Complex Engineering Service Systems. London : Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-189-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Loureiro, Geilson, et Richard Curran, dir. Complex Systems Concurrent Engineering. London : Springer London, 2007. http://dx.doi.org/10.1007/978-1-84628-976-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Eisner, Howard. Managing Complex Systems. New York : John Wiley & Sons, Ltd., 2005.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Zamojski, Wojciech, Jacek Mazurkiewicz, Jarosław Sugier, Tomasz Walkowiak et Janusz Kacprzyk, dir. Dependability Engineering and Complex Systems. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39639-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

M, Titterington D., et Institute of Mathematics andits Applications. Conference,, dir. Complex stochastic systems and engineering. Oxford : Oxford University Press, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Oliver, David W. Engineering complex systems with models and objects. New York : McGraw-Hill, 1997.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Åström, Karl. Control of Complex Systems. London : Springer London, 2001.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Large-scale complex system and systems of systems. Hoboken, NJ : John Wiley, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Systems architecting : Creating and building complex systems. Englewood Cliffs, N.J : Prentice Hall, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Mittal, Saurabh, Saikou Diallo et Andreas Tolk, dir. Emergent Behavior in Complex Systems Engineering. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119378952.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Complex engineering systems"

1

Mobus, George E., et Michael C. Kalton. « Systems Engineering ». Dans Understanding Complex Systems, 699–731. New York, NY : Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1920-8_14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Norman, Douglas O., et Michael L. Kuras. « Engineering Complex Systems ». Dans Understanding Complex Systems, 206–45. Berlin, Heidelberg : Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-32834-3_10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Moser, Hubert Anton. « Systems Engineering and Learning ». Dans Understanding Complex Systems, 11–57. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03895-7_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Hitchins, Derek. « Natural Systems Engineering ». Dans Complex Systems Design & ; Management, 315–34. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02812-5_23.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Baeten, Jos C. M., Joanna M. van de Mortel-Fronczak et Jacobus E. Rooda. « Integration of Supervisory Control Synthesis in Model-Based Systems Engineering ». Dans Complex Systems, 39–58. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28860-4_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Robinett, Rush D., et David G. Wilson. « Case Study #4 : Fundamental Power Engineering ». Dans Understanding Complex Systems, 207–23. London : Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-823-2_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kaluza, Pablo, Hiroshi Kori et Alexander S. Mikhailov. « Evolutionary Engineering of Complex Functional Networks ». Dans Understanding Complex Systems, 351–68. Berlin, Heidelberg : Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75261-5_17.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Balslev, Henrik. « The Systems Engineering Concept ». Dans Complex Systems Design & ; Management, 233. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04209-7_19.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Jézéquel, Jean-Marc, David Méndez-Acuña, Thomas Degueule, Benoit Combemale et Olivier Barais. « When Systems Engineering Meets Software Language Engineering ». Dans Complex Systems Design & ; Management, 1–13. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11617-4_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Luzeaux, Dominique. « Engineering Large-Scale Complex Systems ». Dans Large scale Complex Systems and Systems of Systems Engineering : Case Studies, 1–84. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118601495.ch1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Complex engineering systems"

1

White, B. E. « Complex Adaptive Systems Engineering (CASE) ». Dans 2009 3rd Annual IEEE Systems Conference. IEEE, 2009. http://dx.doi.org/10.1109/systems.2009.4815774.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Cloutier, Robert, et Regina Griego. « Applying Object Oriented Systems Engineering to Complex Systems ». Dans 2008 2nd Annual IEEE Systems Conference. IEEE, 2008. http://dx.doi.org/10.1109/systems.2008.4519058.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

« Complex Engineering Systems and Systems Engineering ». Dans 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE, 2018. http://dx.doi.org/10.1109/etfa.2018.8502549.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Furness, Zach, et Valerie Gawron. « Enabling engineering of complex systems through simulation-based experimentation ». Dans 2010 4th Annual IEEE Systems Conference. IEEE, 2010. http://dx.doi.org/10.1109/systems.2010.5482451.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

DeRosa, Joseph K., Anne-Marie Grisogono, Alex J. Ryan et Douglas O. Norman. « A Research Agenda for the Engineering of Complex Systems ». Dans 2008 2nd Annual IEEE Systems Conference. IEEE, 2008. http://dx.doi.org/10.1109/systems.2008.4518982.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

« WIP Complex Engineering Systems and Systems Engineering ». Dans 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE, 2018. http://dx.doi.org/10.1109/etfa.2018.8502617.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Rhodes, Donna H., et Adam M. Ross. « Five aspects of engineering complex systems emerging constructs and methods ». Dans 2010 4th Annual IEEE Systems Conference. IEEE, 2010. http://dx.doi.org/10.1109/systems.2010.5482431.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Vakili, Golnaz, et Siavash Khorsandi. « Engineering a peer to peer architecture : A complex adaptive system approach ». Dans 2010 4th Annual IEEE Systems Conference. IEEE, 2010. http://dx.doi.org/10.1109/systems.2010.5482487.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

White, Brian E. « On Interpreting Scale (or View) and Emergence in Complex Systems Engineering ». Dans 2007 1st Annual IEEE Systems Conference. IEEE, 2007. http://dx.doi.org/10.1109/systems.2007.374660.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

DeRosa, Joseph K., et L. Keith McCaughin. « Combined Systems Engineering and Management in the Evolution of Complex Adaptive Systems ». Dans 2007 1st Annual IEEE Systems Conference. IEEE, 2007. http://dx.doi.org/10.1109/systems.2007.374653.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Complex engineering systems"

1

Detry, Richard Joseph, John Michael Linebarger, Patrick D. Finley, S. Louise Maffitt, Robert John, Jr Glass, Walter Eugene Beyeler et Arlo Leroy Ames. Complex Adaptive Systems of Systems (CASOS) engineering environment. Office of Scientific and Technical Information (OSTI), février 2012. http://dx.doi.org/10.2172/1038222.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Linebarger, John Michael, S. Louise Maffitt, Robert John, Jr Glass, Walter Eugene Beyeler et Arlo Leroy Ames. Complex Adaptive System of Systems (CASoS) Engineering Applications. Version 1.0. Office of Scientific and Technical Information (OSTI), octobre 2011. http://dx.doi.org/10.2172/1038214.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Moore, Thomas W., Tu-Thach Quach, Richard Joseph Detry, Stephen Hamilton Conrad, Andjelka Kelic, Shirley J. Starks, Walter Eugene Beyeler et al. Phoenix : Complex Adaptive System of Systems (CASoS) engineering version 1.0. Office of Scientific and Technical Information (OSTI), août 2011. http://dx.doi.org/10.2172/1038215.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Brodsky, Nancy S., Patrick D. Finley, Walter Eugene Beyeler, John Michael Linebarger, Thomas W. Moore, Robert John, Jr Glass, S. Louise Maffitt, Michael David Mitchell et Arlo Leroy Ames. Complex Adaptive Systems of Systems (CASoS) engineering and foundations for global design. Office of Scientific and Technical Information (OSTI), janvier 2012. http://dx.doi.org/10.2172/1035333.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Doyle, John. Bioinspired Concepts : Unified Theory for Complex Biological and Engineering Systems. Fort Belvoir, VA : Defense Technical Information Center, janvier 2006. http://dx.doi.org/10.21236/ada484230.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Doyle, John C. Bioinspired Concepts : Unified Theory for Complex Biological and Engineering Systems. Fort Belvoir, VA : Defense Technical Information Center, janvier 2001. http://dx.doi.org/10.21236/ada434182.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Nagahi, Morteza, Raed Jaradat, Simon Goerger, Michael Hamilton, Randy Buchanan, Sawsan Abutabenjeh et Junfeng Ma. The impact of practitioners’ personality traits on their level of systems-thinking skills preferences. Engineer Research and Development Center (U.S.), octobre 2022. http://dx.doi.org/10.21079/11681/45791.

Texte intégral
Résumé :
In this study, we used a structural equation modeling method to investigate the relationship between systems engineers and engineering managers’ Systems-Thinking (ST) skills preferences and their Personality Traits (PTs) in the domain of complex system problems. As organizations operate in more and more turbulent and complex environments, it has become increasingly important to assess the ST skills preferences and PTs of engineers. The current literature lacks studies related to the impact of systems engineers and engineering managers’ PTs on their ST skills preferences, and this study aims to address this gap. A total of 99 engineering managers and 104 systems engineers provided the data to test four hypotheses posed in this study. The results show that the PTs of systems engineers and engineering managers have a positive impact on their level of ST skills preferences and that the education level, the current occupation type, and the managerial experience of the systems engineers and engineering managers moderate the main relationship in the study.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Deiotte, Ray, Jr Garrett et Robert K. A Novel Approach to Mission-Level Engineering of Complex Systems of Systems : Addressing Integration and Interoperability Shortfalls by Interrogating the Interstitials. Fort Belvoir, VA : Defense Technical Information Center, décembre 2013. http://dx.doi.org/10.21236/ada595201.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Hossain, Niamat Ullah Ibne, Raed Jaradat, Michael Hamilton, Charles Keating et Simon Goerger. A historical perspective on development of systems engineering discipline : a review and analysis. Engineer Research and Development Center (U.S.), avril 2021. http://dx.doi.org/10.21079/11681/40259.

Texte intégral
Résumé :
Since its inception, Systems Engineering (SE) has developed as a distinctive discipline, and there has been significant progress in this field in the past two decades. Compared to other engineering disciplines, SE is not affirmed by a set of underlying fundamental propositions, instead it has emerged as a set of best practices to deal with intricacies stemming from the stochastic nature of engineering complex systems and addressing their problems. Since the existing methodologies and paradigms (dominant pat- terns of thought and concepts) of SE are very diverse and somewhat fragmented. This appears to create some confusion regarding the design, deployment, operation, and application of SE. The purpose of this paper is 1) to delineate the development of SE from 1926-2017 based on insights derived from a histogram analysis, 2) to discuss the different paradigms and school of thoughts related to SE, 3) to derive a set of fundamental attributes of SE using advanced coding techniques and analysis, and 4) to present a newly developed instrument that could assess the performance of systems engineers. More than Two hundred and fifty different sources have been reviewed in this research in order to demonstrate the development trajectory of the SE discipline based on the frequency of publication.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Kevrekidis, Ioannis G. Equation-free and variable free modeling for complex/multiscale systems. Coarse-grained computation in science and engineering using fine-grained models. Office of Scientific and Technical Information (OSTI), février 2017. http://dx.doi.org/10.2172/1347549.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie