Sommaire
Littérature scientifique sur le sujet « Compattificazione »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Compattificazione ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Thèses sur le sujet "Compattificazione"
Tartarini, Elena. « Compattificazione di Alexandroff e compattificazioni del piano euclideo ». Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/8711/.
Texte intégralCarissimi, Nicola. « P-punti nella compattificazione di Stone-Čech di ω ». Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16413/.
Texte intégralCatino, Francesca. « Supersymmetry-breaking vacua in simple and extended supergravity and flux compactifications ». Doctoral thesis, Università degli studi di Padova, 2012. http://hdl.handle.net/11577/3422963.
Texte intégralLa ricerca di modelli semi-realistici di supergravità, visti come limite di bassa energia delle teorie di superstring, motivano fortemente lo studio delle teorie di supergravità con gruppi di gauge non banali e delle compattificazioni con flussi. In questo contesto, problemi ancora aperti sono la rottura di supersimmetria, la stabilizzazione dei moduli e la generazione di densità di energia del vuoto piccola e positiva. Nonostante la supergravità N=1 con supersimmetria spontaneamente rotta sia l'unica possibilità fenomenologicamente valida in quattro dimensioni, la sua vasta arbitrarietà viene significativamente ridotta quando si considerano troncazioni consistenti di supergravità estese o, più in generale, le teorie efficaci di compattificazioni con flussi. In questa tesi si esplorano alcuni aspetti della rottura di supersimmetria in cui un ruolo importante \`e giocato dalla struttura teorica vincolata delle supergravità estese e delle compattificazioni con flussi. Si inizia con una breve rassegna sulle strutture basilari delle supergravità in quattro dimensioni e delle compattificazioni con flussi di modelli di supergravità formulati in dimensione più alta. Successivamente si descrive del lavoro originale sui termini di Fayet-Iliopoulos (FI) ed i vuoti di de Sitter (dS): si introduce una nuova distinzione tra termini di FI genuini e 'impostori'; si formula un semplice modello senza anomalie con un termine di FI genuino, un vuoto di dS classicamente stabile e senza simmetrie globali; si analizzano le relazioni tra i termini di FI N=1 e le loro controparti nelle supergravità estese, discutendo opportune troncazioni di queste ultime. Si prosegue poi con dell'altro lavoro originale sulla relazione tra le compattificazioni di M-teoria con flussi geometrici e non-geometrici, le teorie di supergravità N=8 in quattro dimensioni con gruppi di gauge non banali e le troncazioni consistenti di queste ultime a N=1. In particolare: si discutono i vincoli quadratici su tutti i flussi in M-teoria, collegandoli con le condizioni sul tensore di embedding che definisce la teoria di gauge N=8; si identificano i flussi che generano la rottura di supersimmetria à la Scherk-Schwarz con quattro parametri, e si commenta sulla stabilità a un loop del risultante vuoto di Minkowski.
CASSIA, LUCA. « Aspects of Compactifications and Dualities in Superconformal Theories ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2019. http://hdl.handle.net/10281/241119.
Texte intégralThis thesis focuses on various non-perturbative aspects of supersymmetric gauge theories in dimensions 2,3 and 4 and several constructions that relate properties of superconformal quantum field theories among different dimensionalities. Various techniques have been applied the most prominent of them being dimensional reduction and compactifications with decorations of the internal manifolds. The thesis deals with two main topics; the first is the study of compactifications of 4d superconformal field theories placed on a Riemann surface with a particular choice of background data along the internal dimensions, the choice of which is imposed by the requirement that supersymmetry is unbroken by the curved geometry. An extensive analysis of this construction is carried out at the formal level for any genus both for minimal and extended supersymmetry. The results obtained provide a systematic classification of all 2d theories that can be constructed via this technique. We then apply the results to the study of several specific 4d models. By restricting to a special class of theories endowed with a toric structure on their moduli space we are able to show a direct connection between the toric geometry and the explicit form of the 2d central charge and anomalies. The second topic is the study of circle compactifications of 4d dualities. We consider the reduction of Seiberg duality and its generalizations to SQCD with symplectic gauge group and adjoint plus fundamental matter fields. A remarkable property of these 4d theories, called E7 surprise, carries over to 3d and it is shown to be responsible for the appearance in the infrared theory of a pattern of duality and global symmetry enhancement. We conjecture the existence of such IR fixed points and support our claim of the 3d dualities by providing explicit checks of the 3d partition functions computed via supersymmetric localization. Finally, we obtain similar results for theories with power-law superpotentials for the antisymmetric tensor field as well as confining theories with 6 fundamentals.
CORNIANI, ELSA. « Compattificazioni wonderful e spazi di moduli di Kontsevich di coniche ». Doctoral thesis, Università degli studi di Modena e Reggio Emilia, 2022. http://hdl.handle.net/11380/1265207.
Texte intégralIn this thesis we study certain algebraic varieties from the point of view of birational geometry. Given a variety we want to describe all its birational models. In general, this is a very difficult problem, but for a special class of varieties, called Mori dream spaces, the birational geometry is encoded in a decomposition into convex sets of their effective cone. Mori dream spaces have been introduced by Y. Hu and S. Keel, and are named so since they behave in the best possible way from the point of view of the minimal model program. The first part of the thesis is dedicated to the construction of wonderful compactifications of spaces of linear maps. We recall the construction, due to I. Vainsencher, of the spaces of complete collineations and quadrics of maximal rank and then we generalize it to spaces of linear maps of any rank. Then, we construct the wonderful compactification of the space of symmetric and symplectic matrices. By a result of D. Luna, wonderful varieties are spherical and hence Mori dream spaces. So, we take advantage of the spherical structure of these spaces to study their birational geometry from the point of view of Mori theory and in the cases of small Picard rank we give a complete description of the decomposition of the effective cone. In the second part, we relate our wonderful compactification to other moduli spaces such as Hilbert schemes and Kontsevich spaces of stable maps. In fact, we get several results on the birational geometry of Kontsevich moduli spaces of conics in Grassmannians, in Lagrangian Grassmannians and of stable maps of bi-degree (1,1) in a product of two projective spaces.
SACCHI, MATTEO. « Aspects of dualities and symmetry enhancements in three and four dimensions ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/364170.
Texte intégralThe low energy dynamics of quantum field theories can be characterized by several interesting non-perturbative phenomena. Among these, in this thesis we study infra-red dualities and global symmetry enhancements in three and four dimensions. We focus on supersymmetric theories, for which various exact computational tools are at our disposal. Of particular relevance is supersymmetric localization, which allows us to compute partition functions on various compact manifolds. These turn out to be invariant under the renormalization group flow and are thus powerful to probe dualities and symmetry enhancements. Moreover, one can also effectively study flows across dimensions through these supersymmetric partition functions. Equipped with these tools, in this thesis we investigate different perspectives on the program of finding and organizing dualities and symmetry enhancements in 3d and 4d. The approaches that we will employ combine several different concepts that appear in the study of supersymmetric theories. This first one is that we can flow across dimensions via spacetime compactifications. In this way we can find new dualities and symmetry enhancements, by either dimensionally reducing to lower dimensions or uplifting to higher dimensions some that are already known. Another possibility is to compactify a higher dimensional theory, like a 6d theory on a Riemann surface so to get a 4d theory, and use this geometric construction to predict and systematize dualities and symmetry enhancements. The last important ingredient that will play a role in our analysis consists of correspondences, in particular gauge/CFT correspondences relating partition functions of certein supersymmetric theories to correlation functions of some CFTs. These kind of correspondences can also be exploited to find new results on the gauge theory side from known results on the CFT side. In this thesis we discuss various examples of applications of these ideas. We first present a relation between 3d N = 2 dualities and identities for 2d CFT free field correlators, and we explain how this can be used to uplift known results about 2d free fields to new aspects of 3d theories. The second topic is the compactification of a particular 6d N = (1, 0) SCFT, known as the rank-N E-string theory, on Riemann surfaces with fluxes so to get 4d N = 1 theories. This construction allows us to predict dualities and symmetry enhancements from known properties of the 6d SCFT and geometric considerations. Finally, we discuss a new type of duality for 4d N = 1 theories that represents a higher dimensional ancestor of the well-known 3d mirror symmetry.
CASSANI, DAVIDE. « String theory compactifications with fluxes, and generalized geometry ». Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2009. http://hdl.handle.net/2108/1023.
Texte intégralThe topic of this thesis are compactifications in string theory and supergravity. We study dimensional reductions of type II theories on backgrounds with fluxes, using the techniques of Hitchin's generalized geometry. We start with an introduction of the needed mathematical tools, focusing on SU(3)xSU(3) structures on the generalized tangent bundle T+T*, and analyzing their deformations. Next we study the four dimensional N=2 gauged supergravity which can be defined reducing type II theories on SU(3)xSU(3) structure backgrounds with general NSNS and RR fluxes: we establish the complete bosonic action, and we show how its data are related to the generalized geometry formalism on T+T*. In particular, we derive a geometric expression for the full N=2 scalar potential. Then we focus on the relations between the 10d and 4d descriptions of supersymmetric flux backgrounds: we spell out the N=1 vacuum conditions within the 4d N=2 theory, as well as from its N=1 truncation, and we establish a precise matching with the equations characterizing the N=1 backgrounds at the ten dimensional level. We conclude by presenting some concrete examples, based on coset spaces with SU(3) structure. We establish for these spaces the consistency of the truncation based on left-invariance, and we explore the landscape of vacua of the corresponding theory, taking string loop corrections into account.