Articles de revues sur le sujet « Compact Tokamak »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Compact Tokamak.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Compact Tokamak ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Windridge, Melanie. « Smaller and quicker with spherical tokamaks and high-temperature superconductors ». Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 377, no 2141 (4 février 2019) : 20170438. http://dx.doi.org/10.1098/rsta.2017.0438.

Texte intégral
Résumé :
Research in the 1970s and 1980s by Sykes, Peng, Jassby and others showed the theoretical advantage of the spherical tokamak (ST) shape. Experiments on START and MAST at Culham throughout the 1990s and 2000s, alongside other international STs like NSTX at the Princeton Plasma Physics Laboratory, confirmed their increased efficiency (namely operation at higher beta) and tested the plasma physics in new regimes. However, while interesting devices for study, the perceived technological difficulties due to the compact shape initially prevented STs being seriously considered as viable power plants. Then, in the 2010s, high-temperature superconductor (HTS) materials became available as a reliable engineering material, fabricated into long tapes suitable for winding into magnets. Realizing the advantages of this material and its possibilities for fusion, Tokamak Energy proposed a new ST path to fusion power and began working on demonstrating the viability of HTS for fusion magnets. The company is now operating a compact tokamak with copper magnets, R 0 ∼ 0.4 m, R / a ∼ 1.8, and target I p = 2MA, B t0 = 3 T, while in parallel developing a 5 T HTS demonstrator tokamak magnet. Here we discuss why HTS can be a game-changer for tokamak fusion. We outline Tokamak Energy's solution for a faster way to fusion and discuss plans and progress, including benefits of smaller devices on the development path and advantages of modularity in power plants. We will indicate some of the key research areas in compact tokamaks and introduce the physics considerations behind the ST approach, to be further developed in the subsequent paper by Alan Costley. This article is part of a discussion meeting issue ‘Fusion energy using tokamaks: can development be accelerated?’.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Whyte, Dennis. « Small, modular and economically attractive fusion enabled by high temperature superconductors ». Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 377, no 2141 (4 février 2019) : 20180354. http://dx.doi.org/10.1098/rsta.2018.0354.

Texte intégral
Résumé :
The advantages of high magnetic fields in tokamaks are reviewed, and why they are important in leading to more compact tokamaks. A brief explanation is given of what limits the magnetic field in a tokamak, and why high temperature superconductors (HTSs) are a game changer, not just because of their higher magnetic fields but also for reasons of higher current density and higher operating temperatures. An accelerated pathway to fusion energy is described, defined by the SPARC and ARC tokamak designs. This article is part of a discussion meeting issue ‘Fusion energy using tokamaks: can development be accelerated?’.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Manheimer, Wallace. « Comment on ‘The advanced tokamak path to a compact net electric fusion pilot plant’ ». Nuclear Fusion 62, no 12 (18 octobre 2022) : 128001. http://dx.doi.org/10.1088/1741-4326/ac88e4.

Texte intégral
Résumé :
Abstract This comment (letter) examines a recent GA concept which they hope will lead to a tokamak fusion pilot plant. As tokamaks are now the closest configuration to practical magnetic fusion, if they cannot do a pilot plant, almost certainly no other device can either. The conclusion is that constructing a tokamak fusion pilot plant at this time is enormously risky, and is almost certainly tremendous waste of scarce fusion resources, which could be better used on other efforts in the fusion effort.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Wootton, A. J., J. C. Wiley, P. H. Edmonds et D. W. Ross. « Compact tokamak reactors ». Nuclear Fusion 37, no 7 (juillet 1997) : 927–37. http://dx.doi.org/10.1088/0029-5515/37/7/i02.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Costley, A. E. « Towards a compact spherical tokamak fusion pilot plant ». Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 377, no 2141 (4 février 2019) : 20170439. http://dx.doi.org/10.1098/rsta.2017.0439.

Texte intégral
Résumé :
The question of size of a tokamak fusion reactor is central to current fusion research especially with the large device, ITER, under construction and even larger DEMO reactors under initial engineering design. In this paper, the question of size is addressed initially from a physics perspective. It is shown that in addition to size, field and plasma shape are important too, and shape can be a significant factor. For a spherical tokamak (ST), the elongated shape leads to significant reductions in major radius and/or field for comparable fusion performance. Further, it is shown that when the density limit is taken into account, the relationship between fusion power and fusion gain is almost independent of size, implying that relatively small, high performance reactors should be possible. In order to realize a small, high performance fusion module based on the ST, feasible solutions to several key technical challenges must be developed. These are identified and possible design solutions outlined. The results of the physics, technical and engineering studies are integrated using the Tokamak Energy system code, and the results of a scoping study are reviewed. The results indicate that a relatively small ST using high temperature superconductor magnets should be feasible and may provide an alternative, possibly faster, ‘small modular’ route to fusion power. This article is part of a discussion meeting issue ‘Fusion energy using tokamaks: can development be accelerated?’.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Menard, J. E., B. A. Grierson, T. Brown, C. Rana, Y. Zhai, F. M. Poli, R. Maingi, W. Guttenfelder et P. B. Snyder. « Fusion pilot plant performance and the role of a sustained high power density tokamak ». Nuclear Fusion 62, no 3 (7 février 2022) : 036026. http://dx.doi.org/10.1088/1741-4326/ac49aa.

Texte intégral
Résumé :
Abstract Recent U.S. fusion development strategy reports all recommend that the U.S. should pursue innovative science and technology to enable construction of a fusion pilot plant (FPP) that produces net electricity from fusion at low capital cost. Compact tokamaks have been proposed as a means of potentially reducing the capital cost of a FPP. However, compact steady-state tokamak FPPs face the challenge of integrating a high fraction of self-driven current with high core confinement, plasma pressure, and high divertor parallel heat flux. This integration is sufficiently challenging that a dedicated sustained-high-power-density (SHPD) tokamak facility is proposed by the U.S. community as the optimal way to close this integration gap. Performance projections for the steady-state tokamak FPP regime are presented and a preliminary SHPD device with substantial flexibility in lower aspect ratio (A = 2–2.5), shaping, and divertor configuration to narrow gaps to an FPP is described.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Menard, J. E. « Compact steady-state tokamak performance dependence on magnet and core physics limits ». Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 377, no 2141 (4 février 2019) : 20170440. http://dx.doi.org/10.1098/rsta.2017.0440.

Texte intégral
Résumé :
Compact tokamak fusion reactors using advanced high-temperature superconducting magnets for the toroidal field coils have received considerable recent attention due to the promise of more compact devices and more economical fusion energy development. Facilities with combined fusion nuclear science and Pilot Plant missions to provide both the nuclear environment needed to develop fusion materials and components while also potentially achieving sufficient fusion performance to generate modest net electrical power are considered. The performance of the tokamak fusion system is assessed using a range of core physics and toroidal field magnet performance constraints to better understand which parameters most strongly influence the achievable fusion performance. This article is part of a discussion meeting issue ‘Fusion energy using tokamaks: can development be accelerated?’.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Dlougach, Eugenia, Alexander Panasenkov, Boris Kuteev et Arkady Serikov. « Neutral Beam Coupling with Plasma in a Compact Fusion Neutron Source ». Applied Sciences 12, no 17 (23 août 2022) : 8404. http://dx.doi.org/10.3390/app12178404.

Texte intégral
Résumé :
FNS-ST is a fusion neutron source project based on a spherical tokamak (R/a = 0.5 m/0.3 m) with a steady-state neutron generation of ~1018 n/s. Neutral beam injection (NBI) is supposed to maintain steady-state operation, non-inductive current drive and neutron production in FNS-ST plasma. In a low aspect ratio device, the toroidal magnetic field shape is not optimal for fast ions confinement in plasma, and the toroidal effects are more pronounced compared to the conventional tokamak design (with R/a > 2.5). The neutral beam production and the tokamak plasma response to NBI were efficiently modeled by a specialized beam-plasma software package BTR-BTOR, which allowed fast optimization of the neutral beam transport and evolution within the injector unit, as well as the parametric study of NBI induced effects in plasma. The “Lite neutral beam model” (LNB) implements a statistical beam description in 6-dimensional phase space (106–1010 particles), and the beam particle conversions are organized as a data flow pipeline. This parametric study of FNS-ST tokamak is focused on the beam-plasma coupling issue. The main result of the study is a method to achieve steady-state current drive and fusion controllability in beam-driven toroidal plasmas. LNB methods can be also applied to NBI design for conventional tokamaks.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Willis, John W., H. P. Furth, Rodolfo Carrera, Daniel R. Cohn, D. Bruce Montgomery et William F. Weldon. « Compact Tokamak Ignition Concepts ». Journal of Fusion Energy 8, no 1-2 (juin 1989) : 27–41. http://dx.doi.org/10.1007/bf01050775.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Schmidt, John. « The Compact Ignition Tokamak ». Journal of Fusion Energy 7, no 2-3 (septembre 1988) : 139–42. http://dx.doi.org/10.1007/bf01054633.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Humphry-Baker, Samuel A., et George D. W. Smith. « Shielding materials in the compact spherical tokamak ». Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 377, no 2141 (4 février 2019) : 20170443. http://dx.doi.org/10.1098/rsta.2017.0443.

Texte intégral
Résumé :
Neutron shielding materials are a critical area of development for nuclear fusion technology. In the compact spherical tokamak, shielding efficiency improvements are particularly needed because of severe space constraints. The most spatially restricted component is the central column shield. It must protect the superconducting magnets from excessive radiation-induced degradation, but also from associated heating, so that energy consumption of the cryogenic systems is kept to an acceptable level. Recent simulations show that tungsten carbide and its composites form an attractive class of neutron-attenuating materials. In this paper, the key structure–property relationships of these materials are assessed, as they relate to generic materials challenges for plasma-facing materials. We first consider some fundamental materials properties of monolithic tungsten carbide including thermal transport, mechanical properties and plasma interaction. WC is found to have generally favourable properties compared to metallic tungsten shields. We then report progress on the development of a new candidate cermet material, WC-FeCr. Recent results on its accident safety, thermo-mechanical properties, and irradiation behaviour are presented. This review also highlights the need for further study, particularly in the areas of irradiation damage and hydrogen trapping. This article is part of a discussion meeting issue ‘Fusion energy using tokamaks: can development be accelerated?’.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Montgomery, D. B. « The Compact Ignition Tokamak Project ». IEEE Transactions on Magnetics 24, no 2 (mars 1988) : 1237–40. http://dx.doi.org/10.1109/20.11459.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Ge Li, Yingui Zhou, Haitian Wang, Peng Fu et Liang Cao. « Compact power supplies for tokamak heating ». IEEE Transactions on Dielectrics and Electrical Insulation 19, no 1 (février 2012) : 233–38. http://dx.doi.org/10.1109/tdei.2012.6148523.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Flanagan, C. A., T. G. Brown, W. R. Hamilton, V. D. Lee, Y.-K. M. Peng, T. E. Shannon, P. T. Spampinato et al. « Overview of the Compact Ignition Tokamak ». Fusion Technology 10, no 3P2A (novembre 1986) : 491–97. http://dx.doi.org/10.13182/fst86-a24794.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Rodriguez-Fernandez, P., A. J. Creely, M. J. Greenwald, D. Brunner, S. B. Ballinger, C. P. Chrobak, D. T. Garnier et al. « Overview of the SPARC physics basis towards the exploration of burning-plasma regimes in high-field, compact tokamaks ». Nuclear Fusion 62, no 4 (1 mars 2022) : 042003. http://dx.doi.org/10.1088/1741-4326/ac1654.

Texte intégral
Résumé :
Abstract The SPARC tokamak project, currently in engineering design, aims to achieve breakeven and burning plasma conditions in a compact device, thanks to new developments in high-temperature superconductor technology. With a magnetic field of 12.2 T on axis and 8.7 MA of plasma current, SPARC is predicted to produce 140 MW of fusion power with a plasma gain of Q ≈ 11, providing ample margin with respect to its mission of Q > 2. All tokamak systems are being designed to produce this landmark plasma discharge, thus enabling the study of burning plasma physics and tokamak operations in reactor relevant conditions to pave the way for the design and construction of a compact, high-field fusion power plant. Construction of SPARC is planned to begin by mid-2021.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Post, D., W. Houlberg, G. Bateman, L. Bromberg, D. Cohn, P. Colestock, M. Hughes et al. « Physics Aspects of the Compact Ignition Tokamak ». Physica Scripta T16 (1 janvier 1987) : 89–106. http://dx.doi.org/10.1088/0031-8949/1987/t16/011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Selcow, E. C. « Activation Analysis of the Compact Ignition Tokamak ». Fusion Technology 10, no 3P2B (novembre 1986) : 1495–500. http://dx.doi.org/10.13182/fst86-a24945.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Singer, Clifford E., Long-Poe Ku et Glenn Bateman. « Plasma Transport in a Compact Ignition Tokamak ». Fusion Technology 13, no 4 (mai 1988) : 543–54. http://dx.doi.org/10.13182/fst88-a25134.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Fragetta, W. A., et R. E. Rocco. « Compact Ignition Tokamak Vacuum Vessel Material Selectiona ». Fusion Technology 19, no 3P2A (mai 1991) : 1115–20. http://dx.doi.org/10.13182/fst91-a29492.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Sheffield, J., R. A. Dory, W. A. Houlberg, N. A. Uckan, M. Bell, P. Colestock, J. Hosea et al. « Physics Guidelines for the Compact Ignition Tokamak ». Fusion Technology 10, no 3P2A (novembre 1986) : 481–90. http://dx.doi.org/10.13182/fst86-a24793.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Spampinato, P. T., et C. W. Bushnell. « Maintainability Features of the Compact Ignition Tokamak ». Fusion Technology 10, no 3P2A (novembre 1986) : 527–32. http://dx.doi.org/10.13182/fst86-a24800.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Kurnaev, V. A., V. E. Nikolaeva, S. A. Krat, E. D. Vovchenko, A. V. Kaziev, A. S. Prishvitsyn, G. M. Vorob'ev, T. V. Stepanova et D. S. Gvozdevskaya. « Systems of in situ diagnostics of plasma-surface interaction in MEPHIST-1 tokamak ». Izvestiya vysshikh uchebnykh zavedenii. Fizika 64, no 1 (2021) : 118–24. http://dx.doi.org/10.17223/00213411/64/1/118.

Texte intégral
Résumé :
In the Institute for Laser and Plasma Technologies of NRNU MEPhI a compact spherical tokamak MEPhIST (MEPhI-Spherical Tokamak) for educational, demonstration and research purposes is under development and construction. The creation of plasma diagnostics systems involves several stages, determined by the successive complication of the plasma researchtasks, the upgrading of the device and the development of educational and methodological material for laboratory work to be put at the tokamak. Working out in situ methods of plasma-surface interaction analysis is one of the main scientific and technological goals of this tokamak. The complex of diagnostics described in the paper provides complementary information about the processes occurring at plasma with surface contact, is a set of very informative and well-tested diagnostic tools that allow students to obtain visual and reliable information about the processes occurring in the discharge chamber of the tokamak.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Binderbauer, M. W., et N. Rostoker. « Turbulent transport in magnetic confinement : how to avoid it ». Journal of Plasma Physics 56, no 3 (décembre 1996) : 451–65. http://dx.doi.org/10.1017/s0022377800019413.

Texte intégral
Résumé :
From recent tokamak research, there is considerable experimental evidence that superthermal ions slow down and diffuse classically in the presence of turbulent fluctuations that cause anomalous transport of thermal ions. Further more, research on field-reversed configurations at Los Alamos is consistent with the view that kinetic effects suppress instability growth when the ratio of plasma radius to ion orbital radius is small; turbulence is enhanced and confinement degrades when this ratio increases. Motivated by these experiments, we consider a plasma consisting of large-orbit non-adiabatic ions and adiabatic electrons. For such a plasma, it is possible that the anomalous transport characteristic of tokamaks can be avoided and a compact reactor design becomes viable.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Nowak vel Nowakowski, P., D. Makowski, B. Jabłoński, P. Szajerski, Santosh P. Pandya, R. O’Connor, R. Tieulent et R. Barnsley. « Evaluation of optical transmission across the ITER hard x-ray monitor system designed for the first plasma scenarios ». Review of Scientific Instruments 93, no 10 (1 octobre 2022) : 103512. http://dx.doi.org/10.1063/5.0101802.

Texte intégral
Résumé :
Hard x-ray (HXR) spectroscopy is applied for diagnostics of runaway electrons in nuclear fusion reactors. The scintillation counter is one of the most commonly used types of detectors for HXR spectroscopy. It consists of a detector that emits light when excited by HXR radiation (scintillator) directly coupled to a PMT (Photomultiplier Tube) that converts light pulses into an electrical signal. This type of detector is commonly used in existing tokamaks, such as Joint European Torus (JET), Experimental Advanced Superconducting Tokamak (EAST), Compact Assembly (COMPASS), and Axially Symmetric Divertor Experiment (ASDEX-U). In all these cases, the scintillator is directly coupled to the PMT to provide the best possible light transmission efficiency. The Hard X-ray Monitor (HXRM) is one among the first plasma diagnostic systems at ITER that provides information about the energy distribution of runaway electrons inside a tokamak by HXR spectroscopy. This system also uses a scintillator and a PMT as a detector. Due to the heavy shielding of the blanket modules, vacuum vessel, and port-plugs, it is not possible to assemble the scintillator outside the tokamak vacuum vessel. The PMT detector cannot be installed in the close vicinity of the tokamak due to either the significant magnetic field or temperature. A possible solution is to decouple the scintillator from the PMT and place the PMT inside the port-cell. Light pulses will be transmitted to the PMT via a 12 m long optical fiber bundle. Evaluation of the optical transmission was carried out to assess the performance of the HXR monitor and verify possible problems related to the PMT pulse discrimination under low light conditions.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Stotler, Daren P., et Glenn Bateman. « Time-Dependent Simulations of a Compact Ignition Tokamak ». Fusion Technology 15, no 1 (janvier 1989) : 12–28. http://dx.doi.org/10.13182/fst89-a25320.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Stotler, Daren P., et Neil Pomphrey. « Pulse Length Assessment of Compact Ignition Tokamak Designs ». Fusion Technology 17, no 4 (juillet 1990) : 577–87. http://dx.doi.org/10.13182/fst90-a29194.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Bowers, D. A., J. R. Haines, M. D. McSmith et V. D. Lee. « Divertor Design Development for the Compact Ignition Tokamak ». Fusion Technology 19, no 3P2A (mai 1991) : 1138–42. http://dx.doi.org/10.13182/fst91-a29496.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Stotler, Daren P., et R. J. Goldston. « Ignition Probabilities for Compact Ignition Tokamak Design Points ». Fusion Technology 20, no 1 (août 1991) : 7–25. http://dx.doi.org/10.13182/fst91-a29639.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Miley, George H. « Compact Tori as Extensions of the Spherical Tokamak ». Fusion Technology 27, no 3T (avril 1995) : 382–86. http://dx.doi.org/10.13182/fst95-a11947111.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Okano, K., Y. Asaoka, R. Hiwatari, N. Inoue, Y. Murakami, Y. Ogawa, K. Tokimatsu, K. Tomabechi, T. Yamamoto et T. Yoshida. « Study of a compact reversed shear Tokamak reactor ». Fusion Engineering and Design 41, no 1-4 (septembre 1998) : 511–17. http://dx.doi.org/10.1016/s0920-3796(97)00193-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Sykes, A., A. E. Costley, C. G. Windsor, O. Asunta, G. Brittles, P. Buxton, V. Chuyanov et al. « Compact fusion energy based on the spherical tokamak ». Nuclear Fusion 58, no 1 (29 novembre 2017) : 016039. http://dx.doi.org/10.1088/1741-4326/aa8c8d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Holland, D. F., S. J. Brereton et R. E. Lyon. « Nuclear safety enhancements to the compact ignition tokamak ». Fusion Engineering and Design 10 (janvier 1989) : 249–54. http://dx.doi.org/10.1016/0920-3796(89)90060-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Zohm, Hartmut. « On the size of tokamak fusion power plants ». Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 377, no 2141 (4 février 2019) : 20170437. http://dx.doi.org/10.1098/rsta.2017.0437.

Texte intégral
Résumé :
Figures of merit for future tokamak fusion power plants (FPPs) are presented. It is argued that extrapolation from present-day experiments to proposed FPPs must follow a consistent development path, demonstrating the largest required leaps in intermediate devices to allow safe extrapolation to an FPP. This concerns both plasma physics and technology. At constant plasma parameters, the figures of merit depend on both major radius R and magnetic field B . We propose to use the term ‘size’ for a combination of R and B to avoid ambiguities in scaling arguments. Two routes to FPPs are discussed: the more conventional one increasing R , based on the assumption that B is limited by present technology; and an alternative approach assuming the availability of new technology for superconducting coils, allowing higher B . It is shown that the latter will lead to more compact devices, and, assuming a criterion based on divertor impurity concentration, is in addition more favourable concerning the exhaust problem. However, in order to obtain attractive steady-state tokamak FPPs, the required plasma parameters still require considerable progress with respect to present experiments. A credible strategy to arrive at these must hence be shown for both paths. In addition, the high-field path needs a demonstration of the critical technology items early on. This article is part of a discussion meeting issue ‘Fusion energy using tokamaks: can development be accelerated?’.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Zweben, Stewart J., J. D. Strachan et Kenneth M. Young. « Alpha-Particle Experiments on the Tokamak Fusion Test Reactor and the Compact Ignition Tokamak ». Fusion Technology 18, no 4 (décembre 1990) : 573–77. http://dx.doi.org/10.13182/fst90-a29248.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Wade, M. R., et J. A. Leuer. « Cost Drivers for a Tokamak-Based Compact Pilot Plant ». Fusion Science and Technology 77, no 2 (17 février 2021) : 119–43. http://dx.doi.org/10.1080/15361055.2020.1858670.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Kuteev, B. V., V. E. Lukash, V. S. Petrov et Yu S. Shpanskiy. « MAGNETIC SYSTEM OF A COMPACT SPHERICAL TOKAMAK FNS-ST ». Problems of Atomic Science and Technology, Ser. Thermonuclear Fusion 33, no 4 (2010) : 40–47. http://dx.doi.org/10.21517/0202-3822-2010-33-4-40-47.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Raman, R., F. Martin, E. Haddad, M. St-Onge, G. Abel, C. Cote, N. Richard et al. « Experimental demonstration of tokamak fuelling by compact toroid injection ». Nuclear Fusion 37, no 7 (juillet 1997) : 967–72. http://dx.doi.org/10.1088/0029-5515/37/7/i05.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Reddan, W. « Vacuum vessel system design for the compact ignition tokamak ». Journal of Vacuum Science & ; Technology A : Vacuum, Surfaces, and Films 8, no 3 (mai 1990) : 3067–73. http://dx.doi.org/10.1116/1.576588.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Croessmann, Charles D., Neill B. Gilbertson, Robert D. Watson et John B. Whitley. « Thermal Shock Testing of Candidate Compact Ignition Tokamak Graphites ». Fusion Technology 15, no 1 (janvier 1989) : 127–35. http://dx.doi.org/10.13182/fst89-a25335.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Lyon, R. E., et L. C. Cadwallader. « Safety Analysis of the Compact Ignition Tokamak Radiation Shield ». Fusion Technology 15, no 2P2A (mars 1989) : 421–25. http://dx.doi.org/10.13182/fst89-a39737.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Huang, Q., S. Zheng, L. Lu, R. Hiwatari, Y. Asaoka, K. Okano et Y. Ogawa. « Neutronics analysis for a compact reversed shear tokamak CREST ». Fusion Engineering and Design 81, no 8-14 (février 2006) : 1239–44. http://dx.doi.org/10.1016/j.fusengdes.2005.09.057.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

CRAWFORD, M. « U.S.S.R. Eyes Role in U.S. Compact Tokamak Ignition Experiment ». Science 238, no 4830 (20 novembre 1987) : 1035. http://dx.doi.org/10.1126/science.238.4830.1035.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Dabiri, A. E. « Liquid Nitrogen Cooling Considerations of the Compact Ignition Tokamak ». Fusion Technology 10, no 3P2A (novembre 1986) : 521–26. http://dx.doi.org/10.13182/fst86-a24799.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

McManamy, T. J., G. Kanemoto et P. Snook. « Insulation irradiation test programme for the Compact Ignition Tokamak ». Cryogenics 31, no 4 (avril 1991) : 277–81. http://dx.doi.org/10.1016/0011-2275(91)90093-c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

SALINGAROS, N. A. « THE SPHEROMAK AS AN AXISYMMETRIC SPHERICAL DYNAMO : CLARIFICATION OF AN OLD AMBIGUITY ». Modern Physics Letters B 03, no 17 (20 novembre 1989) : 1285–92. http://dx.doi.org/10.1142/s0217984989001953.

Texte intégral
Résumé :
An elementary result in magnetostatics clarifies a fundamental ambiguity in the theory of the Spheromak (which is a compact toroidal plasma without the external poloidal windings of a Tokamak). A free Spheromak (without an external equilibrium field) is shown to possess intrinsic rotational self-forces that amplify its toroidal current, and hence its poloidal magnetic field. This result explains the experimentally observed increase of toroidal current in free compact toroidal plasmas. The possibility of an axisymmetric spherical dynamo that generates its own dipole-like self-field is mentioned.
Styles APA, Harvard, Vancouver, ISO, etc.
46

Shchegolev, P. B., V. B. Minaev, N. N. Bakharev, V. K. Gusev, E. O. Kiselev, G. S. Kurskiev, M. I. Patrov, Yu V. Petrov et A. Yu Telnova. « Neutral Beam Current Drive in Globus-M Compact Spherical Tokamak ». Plasma Physics Reports 45, no 3 (mars 2019) : 195–206. http://dx.doi.org/10.1134/s1063780x19020089.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Xiao, C., A. Hirose et W. Zawalski. « Trajectory of a compact toroid tangentially injected into a tokamak ». Nuclear Fusion 38, no 2 (février 1998) : 249–56. http://dx.doi.org/10.1088/0029-5515/38/2/308.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Okano, K., Y. Asaoka, T. Yoshida, M. Furuya, K. Tomabechi, Y. Ogawa, N. Sekimura et al. « Compact reversed shear tokamak reactor with a superheated steam cycle ». Nuclear Fusion 40, no 3Y (mars 2000) : 635–46. http://dx.doi.org/10.1088/0029-5515/40/3y/326.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Melhem, Ziad, Steven Ball, Robin Brzakalik, Steve Chappell, Mikhail Gryaznevich, David Hawksworth, Dieter Jedamzik et al. « High Temperature Superconducting (HTS) Coils for a Compact Spherical Tokamak ». IEEE Transactions on Applied Superconductivity 25, no 3 (juin 2015) : 1–4. http://dx.doi.org/10.1109/tasc.2014.2375512.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Carlson, K. E., et T. A. Wareing. « Analysis of the Compact Ignition Tokamak Heat Removal System Condenser ». Fusion Technology 15, no 2P2A (mars 1989) : 416–20. http://dx.doi.org/10.13182/fst89-a39736.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie