Littérature scientifique sur le sujet « Communications opportunistes »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Communications opportunistes ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Communications opportunistes"
Martín-Pascual, Miguel Ángel, et Celia Andreu-Sánchez. « Practical Application of Mesh Opportunistic Networks ». Applied System Innovation 6, no 3 (16 juin 2023) : 60. http://dx.doi.org/10.3390/asi6030060.
Texte intégralCarreras, Iacopo, Andrea Zanardi, Elio Salvadori et Daniele Miorandi. « A Distributed Monitoring Framework for Opportunistic Communication Systems An Experimental Approach ». International Journal of Adaptive, Resilient and Autonomic Systems 2, no 3 (juillet 2011) : 45–62. http://dx.doi.org/10.4018/jaras.2011070104.
Texte intégralPajevic, Ljubica, et Gunnar Karlsson. « Modeling opportunistic communication with churn ». Computer Communications 96 (décembre 2016) : 123–35. http://dx.doi.org/10.1016/j.comcom.2016.04.018.
Texte intégralHelgason, Olafur, Sylvia T. Kouyoumdjieva et Gunnar Karlsson. « Opportunistic Communication and Human Mobility ». IEEE Transactions on Mobile Computing 13, no 7 (juillet 2014) : 1597–610. http://dx.doi.org/10.1109/tmc.2013.160.
Texte intégralAmin, Osama, et Lutz Lampe. « Opportunistic Energy Efficient Cooperative Communication ». IEEE Wireless Communications Letters 1, no 5 (octobre 2012) : 412–15. http://dx.doi.org/10.1109/wcl.2012.061212.120206.
Texte intégralGorbil, Gokce, et Erol Gelenbe. « Opportunistic Communications for Emergency Support Systems ». Procedia Computer Science 5 (2011) : 39–47. http://dx.doi.org/10.1016/j.procs.2011.07.008.
Texte intégralNagananda, K. G. « Secure communications over opportunistic-relay channels ». Physical Communication 7 (juin 2013) : 105–21. http://dx.doi.org/10.1016/j.phycom.2012.11.002.
Texte intégralDavoli, Luca, Emanuele Pagliari et Gianluigi Ferrari. « Hybrid LoRa-IEEE 802.11s Opportunistic Mesh Networking for Flexible UAV Swarming ». Drones 5, no 2 (15 avril 2021) : 26. http://dx.doi.org/10.3390/drones5020026.
Texte intégralCiobanu, Radu Ioan, et Ciprian Dobre. « Opportunistic Networks ». International Journal of Virtual Communities and Social Networking 5, no 2 (avril 2013) : 11–26. http://dx.doi.org/10.4018/jvcsn.2013040102.
Texte intégralJohnston, Matthew, Isaac Keslassy et Eytan Modiano. « Channel Probing in Opportunistic Communication Systems ». IEEE Transactions on Information Theory 63, no 11 (novembre 2017) : 7535–52. http://dx.doi.org/10.1109/tit.2017.2717580.
Texte intégralThèses sur le sujet "Communications opportunistes"
Shikfa, Abdullatif. « Sécurité des communications opportunistes ». Paris, Télécom ParisTech, 2010. http://www.theses.fr/2010ENST0045.
Texte intégralIn this thesis, we investigate security in opportunistic communications. This new communication paradigm involves storing and carrying messages in addition to forwarding and impacts all security aspects of communication. Indeed, nodes’ high mobility implies that security solutions should be dynamic and local. Furthermore, delay tolerance, which is one of the main characteristics of opportunistic networks, has a strong impact from a security perspective as it amounts to the infeasibility of interactive protocols. Moreover, radically new forwarding strategies have been proposed to enable communication in opportunistic networks: parting from traditional network addresses, these enriched forwarding strategies use information such as context of a node or content of a message to take forwarding decisions. Context or content are sensitive information that users might not want to reveal to others in order to preserve their privacy, hence these information should be carefully handled to ensure their secrecy. The conflicting requirements between security and forwarding motivate the need for new security mechanisms that enable computation on encrypted data. After analyzing the security challenges in opportunistic communications, we propose a complete security framework for context-based communication. This framework features not only data confidentiality and user privacy, but also computation assurance, which provides resilience against malicious entities aiming at disrupting or subverting the communication. We also propose a privacy-preserving content-based protocol which relies on multiple encryption layers, and an associated local and topology-dependent key management solution
Koteich, Jana. « Routage opportuniste tenant compte du contexte dans les réseaux sans fil ». Electronic Thesis or Diss., Université de Lille (2022-....), 2024. http://www.theses.fr/2024ULILB018.
Texte intégralToday, sharing data and digital content is essential across various applications, particularly in health, education, and agriculture. Traditional wired networks and wireless networks are the two main modes of communication, with the latter presenting more challenges due to the absence of a guided physical path.Opportunistic routing emerges as a promising solution in regions lacking communication infrastructure, especially in Least Developed Countries.In this thesis, we propose an alternative solution to infrastructure-based approaches for delivering data independently of any existing operated infrastructure. This solution relies on low-cost communication and storage devices that can embed different communication technologies, resulting in a global privacy-preserving data-sharing system based on natural crowd mobility. To achieve this, we analyze crowd mobility patterns to assign a delivery probability for a message based on its mobility pattern. First, we generated the PILOT dataset, a privacy-preserving data collection of wireless communication Technologies. The dataset consists of four types of jointly collected information in different mobility contexts. It includes three wireless communication technologies: WiFi probe responses, BLE (Bluetooth Low Energy) beacons, and LoRa (Long Range Radio) packets, as well as additional information on acceleration, roll, and pitch, all collected simultaneously. The dataset was collected over approximately 90 hours, with a size of 200 MB, using FiPy devices from Pycom. We provided the keys to reproduce such data collection and shared the datasets already collected on GitHub. After generating the dataset, we processed the collected traces of WiFi and BLE to generate a classification model that can estimate the real-life situation of a device. The first created model, called the B-model, aims to identify whether a device is stationary or mobile. Subsequently, a complementary model, the M-model, was created to determine a more precise real-life situation of the device, such as being at home, in the office, on a bus, train, etc. Finally, we exploited the collected dataset and the trained machine learning models todesign a routing protocol by setting delivery probabilities conditioned by the determined context of the device. We are testing and validating our approach using the ONE simulator, which is designed for an opportunistic network environment
Benchi, Abdulkader. « Middleware Systems for Opportunistic Computing in Challenged Wireless Networks ». Thesis, Lorient, 2015. http://www.theses.fr/2015LORIS372/document.
Texte intégralOpportunistic networks (OppNets) constitute an appealing solution to complement fixed network infrastructures –or make up for the lack thereof– in challenged areas. Researches in the last few years have mostly addressed the problem of supporting networking in OppNets, yet this can only be a first step towards getting real benefit from these networks. Opportunistic computing goes beyond the concept of opportunistic networking, and provides a new paradigm to enable collaborative computing tasks in such environments. In the realm of opportunistic computing, properly designing, implementing and deploying distributed applications are important tasks. An OppNet-dedicated application must be able to operate and maintain an acceptable level of service while addressing the many problems that can occur in these networks, such as disconnections, partitioning, long transmission delays, transmission failures, resource constraints, frequent changes in topology, and heterogeneous devices. Much of the complexity and cost of building OppNet-dedicated applications can be alleviated by the use of high-level programming models. Such models can be supported by middleware systems capable of transparently addressing all the above-mentioned problems. The work reported in this dissertation focused on providing insight into the fundamental problems posed by OppNets, so as to analyze and solve the problems faced by application developers while dealing with these environments. The research focused on identifying well-known high-level programming models that can be satisfactorily implemented for OppNets, and that can prove useful for application developers. In order to demonstrate the feasibility of application development for OppNets, while assessing the benefits brought about by carefully designed middleware systems, a couple of such systems have been designed, implemented, and evaluated as part of this work. These middleware systems respectively support distributed messaging (through message queues and topics), the tuple-space model, and consensus solving in OppNets. They are supplemented with fully-functional implementations, that can be used in real settings, and that are all distributed under the terms of the GNU General Public License (GPL). Real-life experiments and simulations have been realized so as to evaluate the effectiveness and efficiency of these systems in real conditions
Belouanas, Salah-Eddine. « Dissémination de contenus populaires et tolérants au délai dans les réseaux cellulaires ». Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066230/document.
Texte intégralCellular resources are valuable and must be saved whenever possible. In this thesis, we address the problem of content dissemination within an overloaded cellular network. Firstly, we propose SCoD (Scheduled Content Delivery), a purely cellular dissemination strategy that exploits the mobility of users and their delay tolerance in order to postpone transmissions. SCoD waits for users to gather around a minimum number of access points so that the total number of transmissions is reduced. To trigger transmissions, SCoD relies on different decision functions which launch, if necessary, a multicast transmission. The second part of this thesis deals with the same problem of saving cellular resources, but from another angle. We use D2D (Device-to-Device) communications with multicast to mitigate the traffic load on the infrastructure. We study the benefits of opportunistic communications in the context of a content distribution service based on user subscriptions. We present our results in two ways. First, we illustrate the benefits of D2D communications in a content dissemination process where the cost of opportunistic transmission is negligible compared to that of cellular transmission. Then, we consider the case where users must be compensated for their participation in the dissemination process. Therefore, there is a tradeoff to be found, we thus provide guidelines in this direction and show the variation of such a tradeoff as a function of several network parameters
Belouanas, Salah-Eddine. « Dissémination de contenus populaires et tolérants au délai dans les réseaux cellulaires ». Electronic Thesis or Diss., Paris 6, 2017. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2017PA066230.pdf.
Texte intégralCellular resources are valuable and must be saved whenever possible. In this thesis, we address the problem of content dissemination within an overloaded cellular network. Firstly, we propose SCoD (Scheduled Content Delivery), a purely cellular dissemination strategy that exploits the mobility of users and their delay tolerance in order to postpone transmissions. SCoD waits for users to gather around a minimum number of access points so that the total number of transmissions is reduced. To trigger transmissions, SCoD relies on different decision functions which launch, if necessary, a multicast transmission. The second part of this thesis deals with the same problem of saving cellular resources, but from another angle. We use D2D (Device-to-Device) communications with multicast to mitigate the traffic load on the infrastructure. We study the benefits of opportunistic communications in the context of a content distribution service based on user subscriptions. We present our results in two ways. First, we illustrate the benefits of D2D communications in a content dissemination process where the cost of opportunistic transmission is negligible compared to that of cellular transmission. Then, we consider the case where users must be compensated for their participation in the dissemination process. Therefore, there is a tradeoff to be found, we thus provide guidelines in this direction and show the variation of such a tradeoff as a function of several network parameters
Gorbil, Gokce. « Opportunistic communications for emergency support ». Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/14674.
Texte intégralTo, Toan. « Distributed opportunistic scheduling algorithms for wireless communications ». Thesis, Swansea University, 2012. https://cronfa.swan.ac.uk/Record/cronfa42588.
Texte intégralBjurefors, Fredrik. « Measurements in opportunistic networks ». Licentiate thesis, Uppsala universitet, Avdelningen för datorteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-227626.
Texte intégralWISENET
Kouyoumdjieva, Sylvia T. « System Design for Opportunistic Networks ». Doctoral thesis, KTH, Kommunikationsnät, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-176479.
Texte intégralQC 20151120
Dillon, PJ. « Enabling tetherless care with context-awareness and opportunistic communication ». Thesis, University of Pittsburgh, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3690742.
Texte intégralTetherless care is a novel healthcare delivery paradigm that enables an interaction between caregivers and patients beyond the confines of traditional points of care. This thesis presents a synthesis of recent advances in wearable, ubiquitous sensing; mobile computing; wireless networks; and health information technology into a cohesive framework that enables and supports the tetherless care concept. Tetherless care is formally defined and modeled in a higher order logical framework. The model distills three relations between several classes in the model’s domain of discourse. A prototype implementation is developed and evaluated to capture and represent the logical classes of tetherless care and provide the development infrastructure upon which the relational logic outlined by the model can be implemented. An algorithm is presented and evaluated to support the delivery of traffic between mobile devices and servers despite intermittent connectivity given the changing urgency of the patient’s situation. And an example tetherless care application is presented, developed for the framework, and compared with its deployment on a similar platform. Results show that contemporary mobile devices supply sufficient power to support 24 hours of operation and that, at least, some patient environments provide sufficient opportunities for connectivity to reliably meet the demands of some tetherless care applications, ultimately leading to a conclusion of proof-of-concept for tetherless care.
Livres sur le sujet "Communications opportunistes"
Woungang, Isaac. Routing in Opportunistic Networks. New York, NY : Springer New York, 2013.
Trouver le texte intégralCheng, Nan, et Xuemin Shen. Opportunistic Spectrum Utilization in Vehicular Communication Networks. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-20445-1.
Texte intégralMachinery, Association for Computing, et International Conference on Mobile Systems, Applications and Services (5th : 2007 : San Juan, P.R.), dir. MobiOpp '07 : Proceedings of the First International MobiSys Workshop on Mobile Opportunistic Networking : San Juan, Puerto Rico, June 11, 2007. New York, N.Y : Association for Computing Machinery, 2007.
Trouver le texte intégralWoungang, Isaac, Athanasios V. Vasilakos, Sanjay Kumar Dhurandher et Alagan Anpalagan. Routing in Opportunistic Networks. Springer, 2015.
Trouver le texte intégralWoungang, Isaac, Athanasios V. Vasilakos, Sanjay Kumar Dhurandher et Alagan Anpalagan. Routing in Opportunistic Networks. Springer, 2013.
Trouver le texte intégralDenko, Mieso K. Mobile Opportunistic Networks. Taylor & Francis Group, 2011.
Trouver le texte intégralDenko, Mieso K. Mobile Opportunistic Networks. Taylor & Francis Group, 2019.
Trouver le texte intégralMedeisis, Arturas, Oliver Holland et Hanna Bogucka. Opportunistic Spectrum Sharing and White Space Access : The Practical Reality. Wiley & Sons, Limited, John, 2015.
Trouver le texte intégralMedeisis, Arturas, Oliver Holland et Hanna Bogucka. Opportunistic Spectrum Sharing and White Space Access : The Practical Reality. Wiley & Sons, Incorporated, John, 2015.
Trouver le texte intégralMedeisis, Arturas, Oliver Holland et Hanna Bogucka. Opportunistic Spectrum Sharing and White Space Access : The Practical Reality. Wiley & Sons, Incorporated, John, 2015.
Trouver le texte intégralChapitres de livres sur le sujet "Communications opportunistes"
Weik, Martin H. « opportunistic planning ». Dans Computer Science and Communications Dictionary, 1157. Boston, MA : Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_12917.
Texte intégralHasan, Syed Faraz. « Opportunistic Networking ». Dans Emerging Trends in Communication Networks, 33–43. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07389-7_4.
Texte intégralCheng, Nan, et Xuemin Shen. « Opportunistic Communication Spectra Utilization ». Dans SpringerBriefs in Electrical and Computer Engineering, 9–27. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-20445-1_2.
Texte intégralXin, ChunSheng, et Min Song. « Opportunistic Spectrum Access ». Dans Spectrum Sharing for Wireless Communications, 7–16. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13803-9_2.
Texte intégralMisra, Sudip, Barun Kumar Saha et Sujata Pal. « Opportunistic Mobile Networks : Toward Reality ». Dans Computer Communications and Networks, 259–72. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29031-7_9.
Texte intégralGorbil, Gokce, et Erol Gelenbe. « Resilient Emergency Evacuation Using Opportunistic Communications ». Dans Computer and Information Sciences III, 249–57. London : Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4594-3_26.
Texte intégralBoldrini, Chiara, Marco Conti et Andrea Passarella. « Social-based autonomic routing in opportunistic networks ». Dans Autonomic Communication, 31–67. Boston, MA : Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-09753-4_2.
Texte intégralHahm, Seong-il, Jongwon Lee et Chong-kwon Kim. « Distributed Opportunistic Scheduling in IEEE 802.11 WLANs ». Dans Personal Wireless Communications, 263–74. Berlin, Heidelberg : Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11872153_23.
Texte intégralDede, Jens, et Anna Förster. « Comparative Analysis of Opportunistic Communication Technologies ». Dans Interoperability, Safety and Security in IoT, 3–10. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52727-7_1.
Texte intégralMihaita, Alexandra-Elena, Ciprian Dobre, Florin Pop, Constandinos X. Mavromoustakis et George Mastorakis. « Secure Opportunistic Vehicle-to-Vehicle Communication ». Dans Studies in Big Data, 229–68. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45145-9_10.
Texte intégralActes de conférences sur le sujet "Communications opportunistes"
Mox, Daniel, Kashish Garg, Alejandro Ribeiro et Vijay Kumar. « Opportunistic Communication in Robot Teams ». Dans 2024 IEEE International Conference on Robotics and Automation (ICRA), 12090–96. IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10610971.
Texte intégralCladera, Fernando, Zachary Ravichandran, Ian D. Miller, M. Ani Hsieh, C. J. Taylor et Vijay Kumar. « Enabling Large-scale Heterogeneous Collaboration with Opportunistic Communications ». Dans 2024 IEEE International Conference on Robotics and Automation (ICRA), 2610–16. IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10611469.
Texte intégralNikoletseas, Sotiris A. « Session details : Opportunistic communications ». Dans MSWiM '13 : 16th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems. New York, NY, USA : ACM, 2013. http://dx.doi.org/10.1145/3254738.
Texte intégralBudzik, Jay, Shannon Bradshaw, Xiaobin Fu et Kristian J. Hammond. « Clustering for opportunistic communication ». Dans the eleventh international conference. New York, New York, USA : ACM Press, 2002. http://dx.doi.org/10.1145/511446.511541.
Texte intégralNam, Young-Han, Jianzhong Zhang, Hesham El-Gamal et Tony Reid. « Opportunistic Communications with Distorted CSIT ». Dans 3rd International Symposium on Wireless Communication Systems. IEEE, 2006. http://dx.doi.org/10.1109/iswcs.2006.4362250.
Texte intégralShikfa, Abdullatif. « Security challenges in opportunistic communication ». Dans 2011 IEEE GCC Conference and Exhibition (GCC). IEEE, 2011. http://dx.doi.org/10.1109/ieeegcc.2011.5752570.
Texte intégralSohail, Mohsin, et Mihaela Ulieru. « Opportunistic Communication for eNetworks Cyberengineering ». Dans IECON 2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2007. http://dx.doi.org/10.1109/iecon.2007.4460410.
Texte intégralPathak, Ranjana, Peizhao Hu, Jadwiga Indulska et Marius Portmann. « Protocol for efficient opportunistic communication ». Dans 38th Annual IEEE Conference on Local Computer Networks (LCN 2013). IEEE, 2013. http://dx.doi.org/10.1109/lcn.2013.6761240.
Texte intégralHui, Pan, et Anders Lindgren. « Phase transitions of opportunistic communication ». Dans the third ACM workshop. New York, New York, USA : ACM Press, 2008. http://dx.doi.org/10.1145/1409985.1409999.
Texte intégralCiobanu, Radu Ioan, Ciprian Dobre, Valentin Cristea et Dhiya Al-Jumeily. « Social Aspects for Opportunistic Communication ». Dans 2012 11th International Symposium on Parallel and Distributed Computing (ISPDC). IEEE, 2012. http://dx.doi.org/10.1109/ispdc.2012.41.
Texte intégralRapports d'organisations sur le sujet "Communications opportunistes"
Zhang, Jianhua, S. M. Shafiul Alam, Anthony R. Florita, Adarsh Hasandka, Jin Wei-Kocsis, Dexin Wang, Liuqing Yang et Brian S. Hodge. Opportunistic Hybrid Communications Systems for Distributed PV Coordination. Office of Scientific and Technical Information (OSTI), mars 2020. http://dx.doi.org/10.2172/1606149.
Texte intégralTan, Sheu-Sheu, Dong Zheng, Junsham Zhang et James Zeidler. Distributed Opportunistic Scheduling For Ad-Hoc Communications Under Delay Constraint. Fort Belvoir, VA : Defense Technical Information Center, janvier 2010. http://dx.doi.org/10.21236/ada515840.
Texte intégralRao, Ramesh, B. S. Manoj et Michele Zorzi. A Research Proposal on Cognitive Opportunistic Communications and Cognitive Cross-layer Protocol Stack Design. Fort Belvoir, VA : Defense Technical Information Center, juillet 2012. http://dx.doi.org/10.21236/ada584715.
Texte intégral