Littérature scientifique sur le sujet « Colza (Brassica napus L.) »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Colza (Brassica napus L.) ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Colza (Brassica napus L.)"
Santos, A. C., V. E. Fabris, L. C. Basso et H. P. Haag. « Composição química e qualidade biológica da torta de colza (Brassica napus, L : ) ». Anais da Escola Superior de Agricultura Luiz de Queiroz 45 (1988) : 241–82. http://dx.doi.org/10.1590/s0071-12761988000100017.
Texte intégralHryczyna, Anderson Bergamasco, Tiago Roque Benetoli da Silva, Lucas Ambrosano et Gesmila Karoline Zampronio. « ADUBAÇÃO FOLIAR DE BORO EM DOIS HÍBRIDOS DE CANOLA ». Nativa 9, no 5 (23 décembre 2021) : 600–604. http://dx.doi.org/10.31413/nativa.v9i5.12553.
Texte intégralROUSSELLE, Patrick, Françoise DOSBA et Frédérique EBER. « Restauration de la fertilité pour l'androstérilité génocytoplasmique chez le colza (Brassica napus L.). Utilisation des Raphano-Brassica ». Agronomie 5, no 5 (1985) : 431–37. http://dx.doi.org/10.1051/agro:19850507.
Texte intégralSevilla Paniagua, Evangelina, et Hilda Susana Azpíroz Rivero. « CALIDAD DEL ACEITE EN SEMILLAS IRRADIADAS DE DOS ESPECIES DE COLZA (Brassica napus L. y B. campestris L.) ». Revista Fitotecnia Mexicana 11, no 11 (12 mars 2024) : 56. http://dx.doi.org/10.35196/rfm.1988.11.56.
Texte intégralBruno, Adelino de Melo, de Assis Cardoso Almeida Francisco, Palmeira Gomes Josivanda, Pereira da Silva Wilton, dos Santos Moreira Inacia, Maria Gomes dos Santos Yvana, Ferreira Lisboa Jemima, Barbosa da Silva Polyana, do Nascimento Silva Semirames et Marcello de Brito Primo Dalmo. « Physiological response of colza (Brassica napus L.) seeds coated and treated with alternative materials ». African Journal of Agricultural Research 14, no 22 (30 mai 2019) : 943–48. http://dx.doi.org/10.5897/ajar2019.14044.
Texte intégralAZAÏS, Jean-Marc, Janine ONILLON et Marianne LEFORT-BUSON. « Une méthode d'étude de phénomènes de compétition entre génotypes. Application au colza (Brassica napus L.) ». Agronomie 6, no 7 (1986) : 601–14. http://dx.doi.org/10.1051/agro:19860701.
Texte intégralMesquida, J., MH Pham-Délègue, R. Marilleau, M. Le Métayer et M. Renard. « La sécrétion nectarifère des fleurs de cybrides mâles-stériles de colza d'hiver (Brassica napus L) ». Agronomie 11, no 3 (1991) : 217–27. http://dx.doi.org/10.1051/agro:19910308.
Texte intégralBen Youssef, Nabil, Issam Nouairi, Sonia Ben Temime, Wael Taamalli, Mokhtar Zarrouk, Mohamed Habib Ghorbal et Douja Ben Miled Daoud. « Effets du cadmium sur le métabolisme des lipides de plantules de colza (Brassica napus L.) ». Comptes Rendus Biologies 328, no 8 (août 2005) : 745–57. http://dx.doi.org/10.1016/j.crvi.2005.05.010.
Texte intégralNajine, Fouzia, Brahim Marzouk et Abdelkader Cherif. « Effet du chlorure de sodium sur la composition lipidique de la feuille de colza (Brassica napus) ». Canadian Journal of Botany 73, no 4 (1 avril 1995) : 620–28. http://dx.doi.org/10.1139/b95-066.
Texte intégralKavian, Ataollah, Mahin Kalehhouei, Leila Gholami, Zeinab Jafarian, Maziar Mohammadi et Jesús Rodrigo-Comino. « The Use of Straw Mulches to Mitigate Soil Erosion under Different Antecedent Soil Moistures ». Water 12, no 9 (9 septembre 2020) : 2518. http://dx.doi.org/10.3390/w12092518.
Texte intégralThèses sur le sujet "Colza (Brassica napus L.)"
Guerche, Philippe. « Transformation génétique du colza (Brassica napus L. ) ». Paris 11, 1988. http://www.theses.fr/1988PA112134.
Texte intégralTransgenic rapeseed plants have been obtained using two transformation procedure. The regeneration and caracterization of rapeseed plants derived from hairy roots induced by Agrobacterium rhizogenes are describe in the first part. The second part is devoted to the study of direct gene transfer by electroporation. This technique was optimized on tobacco protoplasts using a transient expression assay. The application of this technique to rapessed protoplasts made it possible to obtain transgenic rapeseed plants resistant to the antibiotic kanamycin. Possible agronomy applications of this strategy of transformation to rapeseed improvement are considered
Guerche, Philippe. « Transformation génétique du colza, Brassica napus L ». Grenoble 2 : ANRT, 1988. http://catalogue.bnf.fr/ark:/12148/cb376140414.
Texte intégralNicolas, Stéphane. « Contrôle génétique de la recombinaison homéologue chez les hapoloïdes de Colza (Brassica Napus L. ) ». Rennes, Agrocampus, 2007. http://www.theses.fr/2006NSARH069.
Texte intégralNatural biodiversity and beneficial chromosome rearrangements are an under exploited sustainable resource that can be used to enrich the genetic basis of cultivated plants. A lot is still to be done to make a more efficient use of these vast reservoirs of variation. This process is related to meiosis and recombination between related but divergent genomes. In this study, I have genotyped progenies of haploid x euploid B. Napus with molecular markers and analysed the rate and nature of chromosomal rearrangements originating at meiosis in two haploid genotype (n=19) that display very different meiotic behaviour at metaphase I. I show that a high number of chromosomal rearrangements occur during meiosis of B. Napus haploid and are transmitted by FDR-like unreduced gametes to their progeny ; most of these rearrangements are produced by crossing-overs that occur preferentially between regions of primary homeology (Muller), but may also take place between other duplicated regions showing intragenomic or intergenomic homology. I show that the two haloid genotypes display sharp differences of meiotic “homeologous” recombination and that the two genomes of B. Napus are differentially affected by rearrangements, which suggests that some rearrangements are counter-selected. Finally I show that the rate of chromosomal reshuffling varies within and among chromosomes
Garnier, Aurélie. « Dynamique et dispersion d'une espèce cultivée échappée des champs : le cas du colza ». Paris 11, 2006. http://www.theses.fr/2006PA112199.
Texte intégralThis thesis identifies and quantifies some key-processes governing the escape of oilseed rape from crops, its persistence and expansion in uncultivated areas. First, elasticity analyses, performed with two models, show that persistence of seeds within seedbanks, immigration and long-distance dispersal determine the dynamic and dispersal of feral populations. Secondly, a statistical model provides demographical parameters of feral populations from the explicit likelihood of observed and unobserved stages, obtained from a three-year survey. It shows that immigration is stochastic and provides on average several hundreds and tens of seeds per meter of road verges, depending on its source type (adjacent mature crops or grain trucks). It also shows that only 5% of plants survive until maturity and produce 2 to 3 rosettes. Simulations performed with the above parameters show that feral populations can persist between 5 and 7 years, mainly via a seedbank and immigration. Third, complementary approaches estimate several seed dispersal modes. An experiment shows that seeds fallen on the ground can be re-entrained, probably by vehicles. The best-fitting estimates of a seed flow model, based on both spatial and genetic data and a likelihood-based method, show that half of feral plants originates from unknown seed sources while the other half originates from mature crops. The majority of seeds dispersed from mature crops are likely to remain in front of borders. Rare but large and persisting feral populations should be studied because they could have persistence and dispersal abilities higher than those found here and may therefore influence (trans-)gene flow
Lefort-Buson, Marianne. « Heterosis chez le colza oléagineux (Brassica napus L. ) : analyse génétique et prédiction ». Paris 11, 1986. http://www.theses.fr/1986PA112036.
Texte intégralSzadkowski, Emmanuel. « Devenir des génomes et des gènes dans un contexte polyploïde : cas du colza (Brassica napus L.) ». Rennes, Agrocampus Ouest, 2011. http://www.theses.fr/2011NSARC101.
Texte intégralAllopolyploidy plays a key role in Angiosperm speciation and biodiversity. Allopolyploid species are good models to understand how genes and genome redundancy are managed at the confrontation of two genomes in resynthesized plants from known progenitors. Progenitors of oilseed rape (Brassica napus (AACC, 2n=38) are close to B. Rapa (AA, 2n=20) and B. Oleracea (CC, 2n=18). Homoeologous recombination (between parental genomes) is detected after some generations of resynthesized B. Napus, while gene expression is strongly modified as early as in F1 hybrids. This work focused on the magnitude of structural modifications at onset of polyploid formation and their consequences on homoeologous gene expression. Using cytogenetic approach, we studied the first meiosis of F1 hybrids (AC genome) and their derived S0 plants (AACC genome) obtained through somatic doubling or using its female unreduced gametes. Homoeologous recombination in their progrenies was studied by molecular approach, focusing on two highly syntenic homoeologous chromosomes (A1 and C1) to maximize homoeologous recombination probability. We finally studied gene expression in homoeologous regions on A1 and C1 where recombination occurred and modulates their copy number. We showed that the first meiosis of B. Napus blends genomes (Szadkowski et al. , 2010), in a magnitude that depend upon polyploid formation pathways and cytoplasm. These genetic rearrangements bias homoeologous gene expression even at heterozygous stage. My results provide new clues to understand genetic and gene expression instability in young polyploid species like B. Napus
Mimouni, Brahim. « Étude comparative des constituants polypeptidiques de la fraction globuline des graines de colza (Brassica napus L. ) et espèces parentales (Brassica oleracea L. Et Brassica campestris L. ) ». Bordeaux 1, 1989. http://www.theses.fr/1989BOR10514.
Texte intégralGibot-Leclerc, Stéphanie. « Etude épidémiologique, écophysiologique et agronomique du couple Orobanche ramosa L. /Brassica napus L ». Paris 6, 2004. http://www.theses.fr/2004PA066133.
Texte intégralGaudin, Zachary. « Place de l'azote dans l'interaction plante-plante parasite : Brassica napus L. Phelipanche ramosa (L. ) Pomel ». Nantes, 2013. http://archive.bu.univ-nantes.fr/pollux/show.action?id=2e95d63f-dc3f-42be-b733-cc85c89532b5.
Texte intégralThe broomrape (Phelipanche ramosa L. Pomel) strictly relies on nutrient uptake from phloem elements of its host plant. In France, its adaptation to winter oilseed rape (Brassica napus L. ) results in a major agronomical problem in the most infested regions. Considering the current guidelines of significant reduction in nitrogen inputs and the importance of nitrogen nutrition on oilseed rape productivity, this work aims to demonstrate the role of nitrogen (and other associated minerals : sulfur and phosphore) in the installation and functioning of this plant - parasitic plant interaction. Thus, the beneficial effect of nitrogen fertilization on the production and/or exudation of a major germination stimulant of broomrape seeds, the 2-PEITC, in oilseed rape rhizosphere, as well as on the rapeseed sensibility to broomrape has been here demonstrated. The analysis of the global nitrogen fluxes (15N isotope tracing and amino acid profiling) clarified the impact of parasitism on the nitrogen remobilization and amino acid accumulation patterns in the different compartments of the interaction. Analysis of transfered compounds from the host toward the parasite and accumulated in it has underlined the importance of amino acids and particularly of Gln as long-distance nitrogen carrier, but has also highlighted the role of specific compounds of rapeseed, SMCSO and glucosinolates, in this interaction, and of Asn in nitrogen remobilisation into the parasite
Leitão, Inês Isabel Barata. « Exposição e acumulação de elementos potencialmente tóxicos em plantas de colza Brassica napus L ». Master's thesis, ISA/UL, 2014. http://hdl.handle.net/10400.5/8231.
Texte intégralThe main objective of this work was to evaluate the effects and the response to stress induced by potentially toxic elements, arsenic, cadmium and copper by salinity in rapeseed plants, aiming to realize the potential of rapeseed in phytoremediation. The physiological parameters like biomass and the percentage of dry matter of stems and leaves were evaluated. It was also evaluated the chlorophyll content by Hansatech method. Changes in biomass were more evident in terms of As and NaCl contamination. The chlorophyll content of plants exposed to Cu and Cd proved to be very low, a result that was revealed through plants with obvious signs of necrosis and chlorosis. The concentrations of MDA and H2O2 revealed a heterogeneous behavior, especially with the higher concentration of MDA rape plants with Cu and NaCl and the highest concentration of H2O2 in the NaCl experiment. The mineral content of the plant was different in the various experiments, particularly the absorption of iron was affected by the presence of the PTE. The concentrations of PTE and NaCl were determined at the level of substrate, stems, leaves and seeds.
Livres sur le sujet "Colza (Brassica napus L.)"
Canada. Interdepartmental Executive Committee on Pest Management. The biology of Brassica napus L. (Canola/Rapeseed). Ontario : Information Division of the Plant Industry Directorate, 1994.
Trouver le texte intégralChen, Bao-Yuan. Resynthesized Brassica napus L. : A potential in breeding and research. Svalo v, Sweden : Dept. of Crop Genetics and Breeding, Swedish University of Agricultural Sciences, 1989.
Trouver le texte intégralMillam, Stephen. Studies on the application of biotechnology to Brassica napus L.. Wolverhampton : The Polytechnic, Wolverhampton, 1988.
Trouver le texte intégralSalinas-Garcia, Gilberto Eduardo. Mapping quantitative trait loci controlling agronomic traits in Brassica napus L. Birmingham : University of Birmingham, 1996.
Trouver le texte intégralPlümper, Bernhard. Somatische und sexuelle Hybridisierung für den Transfer von Krankheitsresistenzen auf Brassica napus L. [s.l.] : [s.n.], 1995.
Trouver le texte intégralFalk, Anders. Structure and expression of [beta]-glucosidases and their binding proteins in Brassica napus L. Uppsala : Uppsala Genetic Center, Dept. of Cell Research, Swedish University of Agricultural Sciences, 1994.
Trouver le texte intégralOchs, Günther. Glutamin-Synthetasen in Brassica napus (L.) : Isolation gewebespezifischer Isoformen und molekularbiologische Untersuchung des plastidären Enzyms. [s.l.] : [s.n.], 1993.
Trouver le texte intégralSjödin, Christina. Transfer of resistance against Phoma lingam to Brassica napus L. via somatic hybridization in combination with in vitro selection. Uppsala [Sweden] : Dept. of Plant Breeding, Institutionen för Växtförädling, Swedish University of Agricultural Sciences, 1989.
Trouver le texte intégralLelivelt, Cilia L. C. Introduction of beet cyst nematode resistance from Sinapis alba L. and Raphanus sativus L. into Brassica napus L. (oil-seed rape) through sexual and somatic hybridization. Netherlands ? : [s.n.], 1993.
Trouver le texte intégralSchock, Gerald. Die Multigenfamilie der Glutamin-Synthetase in Brassica napus (L.) : Molekularbiologische Charakterisierung. 1995.
Trouver le texte intégralChapitres de livres sur le sujet "Colza (Brassica napus L.)"
Azimova, Shakhnoza S., et Anna I. Glushenkova. « Brassica napus L. » Dans Lipids, Lipophilic Components and Essential Oils from Plant Sources, 190–96. London : Springer London, 2012. http://dx.doi.org/10.1007/978-0-85729-323-7_633.
Texte intégralChristophe, Wiart. « Rapeseed (Brassica napus L.) ». Dans Handbook of Medicinal Plants of the World for Aging, 80–81. Boca Raton : CRC Press, 2023. http://dx.doi.org/10.1201/9781003301455-34.
Texte intégralPaniagua-Zambrana, Narel Y., Rainer W. Bussmann et Zaal Kikvidze. « Brassica cretica Lam. Brassica napus L. Brassica nigra (L.) K. Koch Brassica oleracea L. Brassica rapa L. Brassicaceae ». Dans Ethnobotany of the Mountain Regions of Eastern Europe, 1–15. Cham : Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-030-98744-2_53-1.
Texte intégralCusters, J. B. M. « Microspore culture in rapeseed (Brassica napus L.) ». Dans Doubled Haploid Production in Crop Plants, 185–93. Dordrecht : Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-1293-4_29.
Texte intégralThomzik, J. E. « Transformation in Oilseed Rape (Brassica napus L.) ». Dans Biotechnology in Agriculture and Forestry, 170–82. Berlin, Heidelberg : Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-78037-0_13.
Texte intégralFrieß, Johannes L., Broder Breckling, Kathrin Pascher et Winfried Schröder. « Case Study 2 : Oilseed Rape (Brassica napus L.) ». Dans Gene Drives at Tipping Points, 103–45. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38934-5_5.
Texte intégralHodgkin, T. « In Vitro Pollen Selection in Brassica napus L ». Dans Sexual Reproduction in Higher Plants, 57–62. Berlin, Heidelberg : Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73271-3_9.
Texte intégralBoniecka, Justyna. « CRISPR/Cas-Based Precision Breeding of Oilseed Rape (Brassica napus L.) – Recent Improvements ». Dans A Roadmap for Plant Genome Editing, 291–307. Cham : Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-46150-7_18.
Texte intégralZhang, Wenyu, Weixin Zhang, Daokuo Ge, Hongxin Cao, Yan Liu, Kunya Fu, Chunhuan Feng, Weitao Chen et Chuwei Song. « Biomass-Based Leaf Curvilinear Model for Rapeseed (Brassica napus L.) ». Dans Computer and Computing Technologies in Agriculture IX, 459–72. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48357-3_44.
Texte intégralBenaicha, Soumia, Idrissi Aissa, Panda Subhasis, Dybiendu S. Mahanty, Rainer W. Bussmann et Elachouri Mostafa. « Brassica fruticulosa Cirillo Brassica napus L. Brassica nigra W.D.J. KochBrassica oleracea L. Brassica rapa L. Coincya tournefortii (Gouan) Alcaraz, T.E. Díaz, Rivas Mart., & ; Sánchez-Gómez Brassicaceae ». Dans Ethnobotany of Mountain Regions, 1–14. Cham : Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-13933-8_53-1.
Texte intégralActes de conférences sur le sujet "Colza (Brassica napus L.)"
Kolbjonoks, Vadims, Aleksandrs Petjukevičs, Marina Krasovska et Natalja Škute. « Influence of Fe3 O4 Nanoparticles on Oxidative Processes and Photosynthetic Pigments of Brassica Napus L., Under Drought ». Dans 2024 IEEE 14th International Conference Nanomaterials : Applications & ; Properties (NAP), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/nap62956.2024.10739747.
Texte intégralVinogradov, D. V., et T. V. Zubkova. « Productivity of spring rape (Brassica napus var. Napus) and spring colza (Brassica rapa L. subsp. campestris) against the background of biological fertilizers ». Dans II INTERNATIONAL CONFERENCE “SUSTAINABLE DEVELOPMENT : AGRICULTURE, VETERINARY MEDICINE AND ECOLOGY”. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0161099.
Texte intégralМуравенко, О. В., Л. В. Земцова, С. А. Зощук, O. Ю. Юркевич et T. E. Саматадзе. « GENOMIC VARIABILITY OF MUTANT RAPESEED LINES (BRASSICA NAPUS L.) ». Dans Материалы I Всероссийской научно-практической конференции с международным участием «Геномика и современные биотехнологии в размножении, селекции и сохранении растений». Crossref, 2020. http://dx.doi.org/10.47882/genbio.2020.38.90.019.
Texte intégralMIKŠA, Ovidijus, et Ligita BALEŽENTIENĖ. « С BUDGET IN THE AGROECOSYSTEMS OF MAIZE (ZEA MAYS L.) AND RAPESEED (BRASSICA NAPUS L.) ». Dans Rural Development 2015. Aleksandras Stulginskis University, 2015. http://dx.doi.org/10.15544/rd.2015.036.
Texte intégralZhang, Wangfei, Erxue Chen, Zengyuan Li, Lei Zhao, Yongjie Ji et Yahong Zhang. « Using compact polarimetric parameters for rape (brassica napus L.) LAI inversion ». Dans 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 2017. http://dx.doi.org/10.1109/igarss.2017.8128338.
Texte intégralZhao, Lili, Shenglian Lu, Xinyu Guo, Weiliang Wen et Sheng Wu. « 3D Shape Reconstruction and Realistic Rendering of Flowering Rape (Brassica napus L.) ». Dans 2011 International Conference on Multimedia and Signal Processing (CMSP). IEEE, 2011. http://dx.doi.org/10.1109/cmsp.2011.154.
Texte intégralZhang, Wenyu, Yan Liu, Weixin Zhang, Weitao Chen, Hongxin Cao, Daokuo Ge, Chunhuan Feng, Chuwei Song, Sijun Ge et Yongxia Liu. « Biomass-based rapeseed (Brassica napus L.) stem and rachis geometric parameter model ». Dans 2016 IEEE International Conference on Functional-Structural Plant Growth Modeling, Simulation, Visualization and Applications (FSPMA). IEEE, 2016. http://dx.doi.org/10.1109/fspma.2016.7818312.
Texte intégral« Отдаленная гибридизация как метод создания 000-форм ярового рапса (Brassica Napus L.) ». Dans ГЕНОФОНД И СЕЛЕКЦИЯ РАСТЕНИЙ. Новосибирск ИЦиГ СО РАН, 2020. http://dx.doi.org/10.18699/gpb2020-100.
Texte intégralDe Jesus-Hernandez, Alelhi, Genaro Amador-Espejo, Raul Delgado-Macuil et Hector Ruiz-Espinosa. « Effect of High-intensity Ultrasound on Canola Oil Bleaching (Brassica Napus l.) ». Dans 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/gckv6098.
Texte intégralZou, Xi-Ling, Ye Cong, Yong Cheng, Guang-Yuan Lu et Xue-Kun Zhang. « Screening and Identification of Waterlogging Tolerant Rapeseed (Brassica Napus L) During Germination Stage ». Dans 2013 Third International Conference on Intelligent System Design and Engineering Applications (ISDEA). IEEE, 2013. http://dx.doi.org/10.1109/isdea.2012.294.
Texte intégral