Littérature scientifique sur le sujet « Colloidal Synthesis - Nanocrystals »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Colloidal Synthesis - Nanocrystals ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Colloidal Synthesis - Nanocrystals"

1

Erdem, Talha, et Hilmi Volkan Demir. « Colloidal nanocrystals for quality lighting and displays : milestones and recent developments ». Nanophotonics 5, no 1 (1 juin 2016) : 74–95. http://dx.doi.org/10.1515/nanoph-2016-0009.

Texte intégral
Résumé :
AbstractRecent advances in colloidal synthesis of nanocrystals have enabled high-quality high-efficiency light-emitting diodes, displays with significantly broader color gamut, and optically-pumped lasers spanning the whole visible regime. Here we review these colloidal platforms covering the milestone studies together with recent developments. In the review, we focus on the devices made of colloidal quantum dots (nanocrystals), colloidal quantum rods (nanorods), and colloidal quantum wells (nanoplatelets) as well as those of solution processed perovskites and phosphor nanocrystals. The review starts with an introduction to colloidal nanocrystal photonics emphasizing the importance of colloidal materials for light-emitting devices. Subsequently,we continue with the summary of important reports on light-emitting diodes, in which colloids are used as the color converters and then as the emissive layers in electroluminescent devices. Also,we review the developments in color enrichment and electroluminescent displays. Next, we present a summary of important reports on the lasing of colloidal semiconductors. Finally, we summarize and conclude the review presenting a future outlook.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Yang, Tung-Han, Shan Zhou, Kyle D. Gilroy, Legna Figueroa-Cosme, Yi-Hsien Lee, Jenn-Ming Wu et Younan Xia. « Autocatalytic surface reduction and its role in controlling seed-mediated growth of colloidal metal nanocrystals ». Proceedings of the National Academy of Sciences 114, no 52 (11 décembre 2017) : 13619–24. http://dx.doi.org/10.1073/pnas.1713907114.

Texte intégral
Résumé :
The growth of colloidal metal nanocrystals typically involves an autocatalytic process, in which the salt precursor adsorbs onto the surface of a growing nanocrystal, followed by chemical reduction to atoms for their incorporation into the nanocrystal. Despite its universal role in the synthesis of colloidal nanocrystals, it is still poorly understood and controlled in terms of kinetics. Through the use of well-defined nanocrystals as seeds, including those with different types of facets, sizes, and internal twin structure, here we quantitatively analyze the kinetics of autocatalytic surface reduction in an effort to control the evolution of nanocrystals into predictable shapes. Our kinetic measurements demonstrate that the activation energy barrier to autocatalytic surface reduction is highly dependent on both the type of facet and the presence of twin boundary, corresponding to distinctive growth patterns and products. Interestingly, the autocatalytic process is effective not only in eliminating homogeneous nucleation but also in activating and sustaining the growth of octahedral nanocrystals. This work represents a major step forward toward achieving a quantitative understanding and control of the autocatalytic process involved in the synthesis of colloidal metal nanocrystals.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Kendall, Owen, Pierce Wainer, Steven Barrow, Joel van Embden et Enrico Della Gaspera. « Fluorine-Doped Tin Oxide Colloidal Nanocrystals ». Nanomaterials 10, no 5 (30 avril 2020) : 863. http://dx.doi.org/10.3390/nano10050863.

Texte intégral
Résumé :
Fluorine-doped tin oxide (FTO) is one of the most studied and established materials for transparent electrode applications. However, the syntheses for FTO nanocrystals are currently very limited, especially for stable and well-dispersed colloids. Here, we present the synthesis and detailed characterization of FTO nanocrystals using a colloidal heat-up reaction. High-quality SnO2 quantum dots are synthesized with a tuneable fluorine amount up to ~10% atomic, and their structural, morphological and optical properties are fully characterized. These colloids show composition-dependent optical properties, including the rise of a dopant-induced surface plasmon resonance in the near infrared.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Della Gaspera, Enrico, Noel W. Duffy, Joel van Embden, Lynne Waddington, Laure Bourgeois, Jacek J. Jasieniak et Anthony S. R. Chesman. « Plasmonic Ge-doped ZnO nanocrystals ». Chemical Communications 51, no 62 (2015) : 12369–72. http://dx.doi.org/10.1039/c5cc02429c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Murray, C. B., Shouheng Sun, W. Gaschler, H. Doyle, T. A. Betley et C. R. Kagan. « Colloidal synthesis of nanocrystals and nanocrystal superlattices ». IBM Journal of Research and Development 45, no 1 (janvier 2001) : 47–56. http://dx.doi.org/10.1147/rd.451.0047.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Li, Dehui, Weichen Qi, Jinglei Xiao, Jing Yang, Yong Wu, Qiao Gao et Shengyong Zhai. « One-Pot Synthesis of Zincblende CuInSe2 Nanocrystals via a Green Solution Reaction Route ». Nano 12, no 09 (septembre 2017) : 1750107. http://dx.doi.org/10.1142/s1793292017501077.

Texte intégral
Résumé :
The facile and ecofriendly method for the synthesis of a suitable colloidal nanocrystal ink plays an important role in the field of solar cells. Here, we describe our recent efforts toward this direction by a simple one-pot colloidal method to engineer CuInSe2 (CISe) nanocrystals with cubic zincblende (ZB) structure. The suitable band gap value and obvious photoresponse of the as-synthesized CISe nanocrystals indicate their potential application in the field of thin film solar cells. In addition, a possible crystal growth mechanism has been suggested for the formation of ZB CISe.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Gerdes, Frauke, Eugen Klein, Sascha Kull, Mohammad Mehdi Ramin Moayed, Rostyslav Lesyuk et Christian Klinke. « Halogens in the Synthesis of Colloidal Semiconductor Nanocrystals ». Zeitschrift für Physikalische Chemie 232, no 9-11 (28 août 2018) : 1267–80. http://dx.doi.org/10.1515/zpch-2018-1164.

Texte intégral
Résumé :
Abstract In this review, we highlight the role of halogenated compounds in the colloidal synthesis of nanostructured semiconductors. Halogen-containing metallic salts used as precursors and halogenated hydrocarbons used as ligands allow stabilizing different shapes and crystal phases, and enable the formation of colloidal systems with different dimensionality. We summarize recent reports on the tremendous influence of these compounds on the physical properties of nanocrystals, like field-effect mobility and solar cell performance and outline main analytical methods for the nanocrystal surface control.
Styles APA, Harvard, Vancouver, ISO, etc.
8

López-Domínguez, Pedro, et Isabel Van Driessche. « Colloidal Oxide Perovskite Nanocrystals : From Synthesis to Application ». CHIMIA International Journal for Chemistry 75, no 5 (28 mai 2021) : 376–86. http://dx.doi.org/10.2533/chimia.2021.376.

Texte intégral
Résumé :
Nanocrystals (NCs) are complex systems that offer a superior level of detailed engineering at the atomic level. The large number of novel and revolutionary applications have made nanocrystals of special interest. In particular oxide perovskites are one of the most widely investigated family of materials in solid-state chemistry, especially for their ferroelectric and superconducting properties. In addition to these well-known properties, perovskites show good electrical conductivity (close to metals), ion conductivity and mixed ionic-electronic conductivity. In that sense, controlled synthesis of nanomaterials with special care over size and shape are essential in many fields of science and technology. Although it is well-known that physical methods deliver excellent quality nanomaterials, their high production cost has increased the interest to more affordable alternative chemical processes. In this review, we focus on the preparation of sub-10 nm oxide perovskite nanocrystals and the main strategies used to control the final properties of the obtained products. In the second part, we present the methods available for nanocrystal solutions processing together with the most remarkable applications foreseen.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Méndez-López, A., A. Morales-Acevedo, Y. J. Acosta-Silva et M. Ortega-López. « Synthesis and Characterization of Colloidal CZTS Nanocrystals by a Hot-Injection Method ». Journal of Nanomaterials 2016 (2016) : 1–7. http://dx.doi.org/10.1155/2016/7486094.

Texte intégral
Résumé :
The present study reports the synthesis of colloidal Cu2ZnSnS4(CZTS) nanocrystals (average size ~4–9 nm) by a simple and low cost hot-injection method. These nanocrystals form larger particles with sizes around 40 nm. Oleylamine (OLA) was used as both the solvent and the nanocrystal stabilizer. The effect of the synthesis time on the structural, compositional, morphological, and optical properties was studied. As revealed by XRD, Raman, and TEM measurements all the prepared samples are comprised of both kesterite and wurtzite CZTS nanocrystals. The wurtzite phase contribution reduces as the reaction time is increased. The “bandgap” of the obtained nanoparticles tends to 1.52 eV for the larger synthesis times (24 h) which is suitable for an absorber layer in thin films solar cells.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Gao, Yukun, et PG Yin. « Synthesis of cubic CdSe nanocrystals and their spectral properties ». Nanomaterials and Nanotechnology 7 (1 janvier 2017) : 184798041770174. http://dx.doi.org/10.1177/1847980417701747.

Texte intégral
Résumé :
The cadmium selenide nanocrystals are prepared by colloidal chemistry under mild conditions. X-ray diffraction and high-resolution transmission electron microscopy measurements indicate that as-prepared cadmium selenide nanocrystals are zinc blende cubic structure. We carry out an analysis of quantum size effect in the Raman spectra of cadmium selenide nanocrystals performed by utilizing the chemical bond theory of Raman peak shift developed recently. It is revealed that the shifts of Raman peaks in cadmium selenide nanocrystals result from the overlapping of the quantum effect shifts and surface effect shifts. The sizes of the as-prepared cadmium selenide nanocrystals obtained by employing the Raman peak shift theory are in good agreement with the nanocrystal sizes determined by high-resolution transmission electron microscopy.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Colloidal Synthesis - Nanocrystals"

1

IMRAN, MUHAMMAD. « Synthesis and Post-synthesis Transformations of Colloidal Semiconductor Nanocrystals ». Doctoral thesis, Università degli studi di Genova, 2018. http://hdl.handle.net/11567/945513.

Texte intégral
Résumé :
The present PhD thesis focuses on two main classes of semiconductor colloidal nanocrystals, i.e. lead halide perovskite and copper chalcogenides. The former class of semiconductor NCs are promising materials for many high performance optoelectronics applications, as they exhibit a tunable band gap in the range of 1.4 to 2.9 eV and an efficient photoluminescence characterized by narrow emission linewidths and have been explored the most in the last years. Following the standard hot injection based synthesis and selecting a combination of short chain acid (octanoic acid or hexanoic acid) together with alkyl amines (octylamine and oleylamine) we prepared strongly fluorescent CsPbBr3 perovskite nanowires with tuneable width, in the range from 20 nm (exhibiting no quantum confinement, hence emitting in the green) to 3 nm (in the strong quantum-confinement regime, emitting in the blue) for the first time. However the main limitation of the colloidal synthesis protocols that was followed in aforementioned case including the ligand assisted reprecipitation routes which is the second most frequently used method for preparation of LHPs, is that they employ PbX2 (X= Cl, Br, or I) salts as both lead and halide precursors which consequently limit the precise tunability of the amount of reaction species such as metals or halides precursors and are not applicable to entire family of APbX3 (A=FA, MA and Cs; X=Cl, Br, I). To overcome this issue we developed benzoyl halide based colloidal synthesis route i.e broadly applicable to the entire family of LHP NCs and not only ensures the independent tunability of reaction precursors but also maintain the overall integrity of the NCs such as phase purity and high PLQY. Despite the significant advances in synthesis procedures, the control over size monodispersity, shape and phase purity remains another long standing challenge. This is in fact due to the tendency of primary alkyl amine in the form of alkylammonium ions that could compete with Cs+ ions and leads to the anisotropic growth such as NPLs or their use in excess permotes the Pb-depleted Cs4PbX6 phases. We develop here a strategy to achieve size, shape and phase pure CsPbBr3 nanocubes by substituting primary alkyl amines with secondary alkyl amines. We attributed this excellent control over the shape and phase purity to the inability of secondary amines to find the right steric conditions at the surface of the nanocrystals which consequently limits the formation of low dimensional structures. The shape purity and narrow size distribution leads to their ease of self-assembly in superlattices reaching up to 50 microns in lateral dimensions, which are the largest dimensions reported to date for superlattices of LHP NCs. The second class of materials studied here, i.e. copper chalcogenides, are mainly attractive due to their tunable composition via post synthesis chemical transformations, plasmonic properties, low toxicity and environmental friendliness. Taking the advantage of colloidal synthesis and using Cu2S as a template we develop a strategy to obtain novel AuCuS-Cu2S heterostructure through cation exchange, which cannot be realized through conventional synthesis approaches. We further investigated the stability of Cu2S NCs with different dimensionalities and their thermal evolution subsequent to the metal decoration. Interestingly the presence of additional metallic NCs, such as Au and Pt not only improves their thermal stability but also leads to the formation of bi-metallic alloys semiconductor heterostructure.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Söderlind, Fredrik. « Colloidal synthesis of metal oxide nanocrystals and thin films ». Doctoral thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11831.

Texte intégral
Résumé :
A main driving force behind the recent years’ immense interest in nanoscience and nanotechnology is the possibility of achieving new material properties and functionalities within, e.g., material physics, biomedicine, sensor technology, chemical catalysis, energy storing systems, and so on. New (theoretical) possibilities represent, in turn, a challenging task for chemists and physicists. An important feature of the present nanoscience surge is its strongly interdisciplinary character, which is reflected in the present work. In this thesis, nanocrystals and thin films of magnetic and ferroelectric metal oxides, e.g. RE2O3 (RE = Y, Gd, Dy), GdFeO3, Gd3Fe5O12, Na0.5K0.5NbO3, have been prepared by colloidal and sol-gel methods. The sizes of the nanocrystals were in the range 3-15 nm and different carboxylic acids, e.g. oleic or citric acid, were chemisorbed onto the surface of the nanoparticles. From FT-IR measurements it is concluded that the bonding to the surface takes place via the carboxylate group in a bidentate or bridging fashion, with some preference for the latter coordination mode. The magnetic properties of nanocrystalline Gd2O3 and GdFeO3 were measured, both with respect to magnetic resonance relaxivity and magnetic susceptibility. Both types of materials exhibit promising relaxivity properties, and may have the potential for use as positive contrast enhancing agents in magnetic resonance imaging (MRI). The nanocrystalline samples were also characterised by transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), and quantum chemical calculations. Thin films of Na0.5K0.5NbO3, GdFeO3 and Gd3Fe5O12 were prepared by sol-gel methods and characterized by x-ray powder diffraction (XRPD) and scanning electron microscopy (SEM). Under appropriate synthesis conditions, rather pure phase materials could be obtained with grain sizes ranging from 50 to 300 nm. Magnetic measurements in the temperature range 2-350 K indicated that the magnetization of the perovskite phase GdFeO3 can be described as the sum of two contributing terms. One term (mainly) due to the spontaneous magnetic ordering of the iron containing sublattice, and the other a susceptibility term, attributable to the paramagnetic gadolinium sublattice. The two terms yield the relationship M(T)=M0(T)+χ(T)*H for the magnetization. The garnet phase Gd3Fe5O12 is ferrimagnetic and showed a compensation temperature Tcomp ≈ 295 K.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Sayevich, Uladzimir. « Synthesis, Surface Design and Assembling of Colloidal Semiconductor Nanocrystals ». Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-209074.

Texte intégral
Résumé :
The work presented in the thesis is focused on the synthesis of diverse colloidal semiconductor NCs in organic media, their surface design with tiny inorganic and hybrid capping species in solution phase, and subsequent assembling of these NC building units into two-dimensional close-packed thin-films and three-dimensional non-ordered porous superstructures.
Styles APA, Harvard, Vancouver, ISO, etc.
4

SHAMSI, JAVAD. « Colloidal Synthesis of Lead Halide Perovskite Nanocrystals for Optoelectronic Application ». Doctoral thesis, Università degli studi di Genova, 2018. http://hdl.handle.net/11567/929994.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Berestok, Taisiia. « Assembly of colloidal nanocrystals into porous nanomaterials ». Doctoral thesis, Universitat de Barcelona, 2018. http://hdl.handle.net/10803/663275.

Texte intégral
Résumé :
This thesis focuses on different aspects of NCs colloidal synthesis, the exploration of the relevant surface chemistries that afford NC assembly and the NC implementation into porous nanomaterials. The work is divided into two blocks. The first block is devoted to developing and optimizing the synthesis of NCs followed by the examination of their suitability for potential applications in catalysis and photocatalysis. The second block is dedicated to establish procedures to fabricate single-component or multicomponent porous nanomaterials from NC building blocks. To embrace the use of the developed strategies in different application fields, several kind of materials were under research. Namely, metals (e.g. Au), metal oxides (e.g. CeO2, TiO2, Fe2O3), metal chalcogenides (e.g. In2S3, ZnS, PbS, CuGaS2 and Cu2ZnSnSe4), and their composites. CeO2 NCs synthesis was deeply investigated with the aim to achieve a proper control on the NCs morphology, facets exposed, crystal phase, composition, etc., required for application. Overall, CeO2 NCs with spherical, octapod-like branched, cubic hyperbranched, and kite-like morphology with sizes in the range 7 to 45 nm were produced by adjusting experimental conditions of the synthetic protocol. Branched and hyperbranched NCs showed higher surface areas, porosities and oxygen capacity storage values compared to quasi-spherical NCs. The NCs morphology-controlled synthesis has been extended to quaternary Cu2ZnSnSe4 (CZTSe). CZTSe NCs with narrow size distribution and controlled composition were produced. It was shown how off-stoichiometric CZTSe compositions were characterized by higher charge carrier concentrations and thus electrical conductivities. The strategy to functionalize the metal oxide NC surface composition by applying different ligands is proposed. This enables to develop a novel approach to assemble metal oxide NCs into porous gel and aerogel structures. Propylene oxide has been found to trigger the gelation process of glutamine functionalized NCs. The detailed investigation of the gelation mechanism is demonstrated for the case of ceria. The method is applied for NCs with different morphologies. Eventually, the versatility of the concept is proved by using of the proposed approach for the TiO2 and Fe2O3 nanocrystals. The assembly method has been extended to metal chalcogenides - In2S3 NCs - starting from the NCs synthesis, with further surface chemistry manipulation and eventually follows by the NC assembly into gels and aerogels. The optimization of NC surface chemistry was achieved by testing different ligand exchange approaches via applying short-chain organic and inorganic ligands. The assembly method based on ligand desorption from the NC surface and chalcogenide-chalcogenide bond formation has been established for In2S3. The comparison of the different ligands impact on the NC performance in colloidal form, when assembled into gels and when supported onto substrate is investigated towards photoelectrocatalysis. The oxidative ligand desorption assembly approach has been extended for multicomponent NCs for the case of CuGaS2 and CuGaS2-ZnS. Optimization of spin-coating process of the formed NCs inks followed by applying of sol-gel chemistry led to formation of highly porous layers from TGA-CuGaS2 and TGA-ZnS. Applied results of CuGaS2/ZnS nanocrystal-based bilayers and CuGaS2–ZnS nanocrystal-based composite layers have been shown by testing their photoelectrochemical energy conversion capabilities. The approach to adjust NC surface chemistry has been proposed and tested for performing multicomponent NC assemblies. Applying of different ligands for NC surface functionalization endows their surface with different charges which usually provides colloidal NCs stabilization. It has been found that mixing of oppositely charged NCs with certain concentration enabled their assembly/gelation via electrostatic interaction. The proposed approach has been applied and optimized to produce multicomponent NC gels and aerogels. The detailed investigation of the gelation mechanism is shown for combination of metal-metal oxide and metal oxide-metal chalcogenide NCs (Au-CeO2, CeO2-PbS). Applied results of the Au-CeO2 aerogels were demonstrated for CO-oxidation.
Esta tesis se centra en la síntesis coloidal de nanocristales (NCs), en la exploración de su química de superficie y en su ensabanado en nanomateriales porosos funcionales. Para demostrar la versatilidad de aplicación de dichas estructuras, en este estudio se han considerado NCs de distintos tipos de materiales: metales (Au), óxidos metálicos (CeO2, TiO2, Fe2O3), calcogenuros metálicos (In2S3, ZnS, PbS, CuGaS2,Cu2ZnSnSe4) y sus materiales compuestos. El trabajo se dividió en dos bloques. En el primero se desarrolló y optimizó la síntesis de NCs de óxidos y calcogenuros metálicos y se evaluó su potencial para aplicaciones de catálisis y fotocatálisis. Se investigó en profundidad la síntesis de NCs de CeO2, poniendo énfasis en controlar su morfología. Se consiguió producir NCs de CeO2 de forma controlada (esférica, octapodo ramificado, cúbico ramificado y romboidal) y con tamaño controlado (7-45 nm). Asimismo, se obtuvieron NCs de Cu2ZnSnSe4 con una fina distribución de tamaños y composición controlada. En el segundo bloque se establecieron y estudiaron procedimientos para fabricar nanomateriales porosos mono- o multicomponentes a partir del ensamblado de NCs. Se desarrolló una estrategia basada en el ajuste de la química de superficie de NCs de óxidos metálicos (CeO2, Fe2O3,TiO2) y de calcogenuros metálicos (In2S3, CuGaS2-ZnS) que permitió su ensamblaje controlado en estructuras porosas de tipo gel y aerogel. En el caso de los óxidos metálicos, se determinó que el ensamblado se inicia con la adición de un epóxido a NCs funcionalizados con glutamina, causando la gelación. La desorción oxidativa de ligandos basada en la formación de enlaces calcogenuro-calcogenuro se propuso como mecanismo de gelación en calcogenuros mono- (In2S3) y multicomponente (CuGaS2-ZnS). Se investigó el impacto del empleo de distintos ligandos en la eficiencia foto-electrocatalítica de NCs en forma coloidal, ensamblados en geles y soportados en sustratos. Se desarrolló y estudió el ajuste de la química de superficie de NCs para la obtención de ensamblajes multicomponente mediante interacción electrostática de coloides en suspensión. El mecanismo de gelación fue investigado al detalle para materiales compuestos de NCs de oxido metálico (CeO2) con NCs de óxido de calcogenuro (PbS-CeO2) y metálicos (Au-CeO2). Los aerogeles de Au-CeO2 demostraron potencial para la oxidación de CO.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Fisher, Aidan Antony Edward. « Colloidal synthesis, structural characterisation and single molecule spectroscopy of semiconducting nanocrystals ». Thesis, University of Sussex, 2018. http://sro.sussex.ac.uk/id/eprint/73443/.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Panthani, Matthew George. « Colloidal Nanocrystals with Near-infrared Optical Properties| Synthesis, Characterization, and Applications ». Thesis, The University of Texas at Austin, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3572875.

Texte intégral
Résumé :

Colloidal nanocrystals with optical properties in the near-infrared (NIR) are of interest for many applications such as photovoltaic (PV) energy conversion, bioimaging, and therapeutics. For PVs and other electronic devices, challenges in using colloidal nanomaterials often deal with the surfaces. Because of the high surface-to-volume ratio of small nanocrystals, surfaces and interfaces play an enhanced role in the properties of nanocrystal films and devices.

Organic ligand-capped CuInSe2 (CIS) and Cu(InXGa 1-X)Se2 (CIGS) nanocrystals were synthesized and used as the absorber layer in prototype solar cells. By fabricating devices from spray-coated CuInSe nanocrystals under ambient conditions, solar-to-electric power conversion efficiencies as high as 3.1% were achieved. Many treatments of the nanocrystal films were explored. Although some treatments increased the conductivity of the nanocrystal films, the best devices were from untreated CIS films. By modifying the reaction chemistry, quantum-confined CuInSe XS2-X (CISS) nanocrystals were produced. The potential of the CISS nanocrystals for targeted bioimaging was demonstrated via oral delivery to mice and imaging of nanocrystal fluorescence.

The size-dependent photoluminescence of Si nanocrystals was measured. Si nanocrystals supported on graphene were characterized by conventional transmission electron microscopy and spherical aberration (Cs)-corrected scanning transmission electron microscopy (STEM). Enhanced imaging contrast and resolution was achieved by using Cs-corrected STEM with a graphene support. In addition, clear imaging of defects and the organic-inorganic interface was enabled by utilizing this technique.

Styles APA, Harvard, Vancouver, ISO, etc.
8

Ho, Minh Q. « Colloidal Synthesis and Optical Characterizations of Semiconductor Nanocrystals from Nontoxic Elements ». VCU Scholars Compass, 2015. http://scholarscompass.vcu.edu/etd/3915.

Texte intégral
Résumé :
To date, the search efforts have shifted from the toxic II-VI, III-V and IV-VI semiconductors to more environmentally friendly materials. Among Group II-V semiconductors, Zn3P2 has shown to be a more benign option, similar to Group IV (Ge, Si) materials, for future applications in photovoltaics and optoelectronics. This work is dedicated to the development of wet-chemical synthetic routes of (1) Zn3P2 and (2) Group IV (Ge, Si, Si1-xGex) nanocrystals with precise control over composition, crystal structure, size and dispersity by adjusting different reaction parameters such as temperature, time and solvent composition. Different characterizations will also be employed to probe the size- and composition-dependent physical and optical properties of resulting products. The first part of this work illustrates the synthesis of luminescent Zn3P2 nanocrystals, an earth-abundant and a direct-gap semiconductor possessing high absorption coefficient and long carrier diffusion length, which uphold promising potential in many optoelectronic applications. A hot injection method by using highly reactive P and Zn precursors (P[Si(CH3)3]3 and diethyl zinc) in hexadecylamine and octadecene was developed to prepare a series of alkyl-amine-passivated tetragonal Zn3P2 crystallites with varying size sizes. Substantial blue shifts in the absorption onsets (2.11−2.73 eV) in comparison to the bulk counterpart (1.4−1.5 eV) and a clear red shift with increasing particle size indicates the quantum confinement effects. This is also consistent with the photoluminescent studies with the size-tunable maxima in the visible region (469−545 nm) as a function of growth temperature and time. The phase purity and alkyl-amine passivation of the nanocrystals were determined by structural and surface analysis, confirming the presence of N–Zn and N–P bonds on the tetragonal Zn3P2 crystallites. The second part of this works focuses on the development of a colloidal synthetic strategy of alkyl-amine capped Si1-xGex nanocrystals with control over size- and composition-dependent optical properties. Despite their high miscibility at all compositions, developing a wet-chemical synthesis of Si1-xGex alloys in the nanoscale remains a challenging task, owing to the difference of their crystallization temperatures and the high surface oxidation of Si. Thus an adapted colloidal method is utilized to fabricate single-element Ge and Si nanocrystals. Powder X-ray diffraction indicates successful production of cubic crystalline Ge and amorphous Si nanoparticles individually in oleylamine/octadecene (surfactant/solvent) mixture at 300°C. Absorption onset values of 1.28 eV and 3.11 eV are obtained for resulting Ge and Si colloids, respectively. By alloying these two materials in their nano-regime, tunable optical properties can be achieved throughout the visible to the near IR region by simply varying their elemental compositions. The success of this bandgap engineering process offers more options for new material design by taking advantage of unique properties from each component material.
Styles APA, Harvard, Vancouver, ISO, etc.
9

GONCALVES, GUILHERME. « Colloidal synthesis and characterization of two- and three-dimensional semiconductor nanocrystals ». Doctoral thesis, Università degli studi di Genova, 2018. http://hdl.handle.net/11567/930563.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Yuan, Ying [Verfasser], et Michael [Akademischer Betreuer] Krüger. « Colloidal CdE (E= S, Se and Te) nanocrystals : from synthesis to applications ». Freiburg : Universität, 2016. http://d-nb.info/1122831633/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Colloidal Synthesis - Nanocrystals"

1

Hendricks, Mark Patrick. The Synthesis of Colloidal Metal Sulfide Nanocrystals. [New York, N.Y.?] : [publisher not identified], 2015.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Lesnyak, Vladimir, Maksym Yarema et Shiding Miao, dir. Colloidal Semiconductor Nanocrystals : Synthesis, Properties, and Applications. Frontiers Media SA, 2020. http://dx.doi.org/10.3389/978-2-88963-269-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Colloidal Synthesis - Nanocrystals"

1

Leite, Edson Roberto, et Caue Ribeiro. « Trends and Perspectives in Nanoparticles Synthesis ». Dans Crystallization and Growth of Colloidal Nanocrystals, 83–92. New York, NY : Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1308-0_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kwon, Soon Gu, et Taeghwan Hyeon. « Kinetics of Colloidal Chemical Synthesis of Monodisperse Spherical Nanocrystals ». Dans Nanoscale Materials in Chemistry, 127–53. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470523674.ch6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Privman, Vladimir. « Models of Size and Shape Control in Synthesis of Uniform Colloids and Nanocrystals ». Dans Fine Particles in Medicine and Pharmacy, 1–24. Boston, MA : Springer US, 2011. http://dx.doi.org/10.1007/978-1-4614-0379-1_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Mehta, Aarti, Shailesh N. Sharma, Kanchan Sharma, Parth Vashishtha et S. Chand. « Single-Pot Rapid Synthesis of Colloidal Core/Core-Shell Quantum Dots : A Novel Polymer-Nanocrystal Hybrid Material ». Dans Physics of Semiconductor Devices, 315–18. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_79.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Privman, Vladimir. « Colloids, Nanocrystals, and Surface Nanostructures of Uniform Size and Shape : Modeling of Nucleation and Growth in Solution Synthesis ». Dans Complex-Shaped Metal Nanoparticles, 239–68. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527652570.ch7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Zeng, Jie, Xiaoping Wang et J. G. « Colloidal Hybrid Nanocrystals : Synthesis, Properties, and Perspectives ». Dans Nanocrystal. InTech, 2011. http://dx.doi.org/10.5772/16418.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Liz-Marzán, Luis M., et Paul Mulvaney. « The Assembly of Coated Nanocrystals* ». Dans Colloidal Synthesis of Plasmonic Nanometals, 89–129. Jenny Stanford Publishing, 2020. http://dx.doi.org/10.1201/9780429295188-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Lesnyak, Vladimir, Nikolai Gaponik et Alexander Eychmüller. « Aqueous Synthesis of Colloidal CdTe Nanocrystals ». Dans Cadmium Telluride Quantum Dots, 23–59. Pan Stanford Publishing, 2013. http://dx.doi.org/10.1201/b16378-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

« Colloidal Inorganic Nanocrystals : Synthesis and Controlled Assembly ». Dans Nanofabrication Handbook, 267–98. CRC Press, 2012. http://dx.doi.org/10.1201/b11626-19.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Li, Zili, Shuang Liang, Mingyue Zhang, Zewei Wang et Zhiqun Lin. « Template-Assisted Colloidal Synthesis of Plasmonic Nanocrystals ». Dans World Scientific Reference on Plasmonic Nanomaterials, 235–304. World Scientific, 2022. http://dx.doi.org/10.1142/9789811235221_0006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Colloidal Synthesis - Nanocrystals"

1

Bastus, Neus, Jordi Piella, Carmen Hervés, Elizaveta Demakova, Jana Oliveras, Oscar Moriones et Victor Puntes. « Colloidal Synthesis of Complex Multicomponent Inorganic Nanocrystals ». Dans Internet NanoGe Conference on Nanocrystals. València : Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.incnc.2021.049.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Zhang, Xiaoyan, Ningzhong Bao, Karthik Ramasamy, Baoping Lin et Arunava Gupta. « Colloidal synthesis of wurtzite Cu2FeSnS4 nanocrystals ». Dans 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC). IEEE, 2012. http://dx.doi.org/10.1109/pvsc.2012.6317981.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Semendy, Fred, Gomatam Jaganathan, Nibir Dhar, Sudhir Trivedi, Ishwara Bhat et Yuanping Chen. « Synthesis and characterization of colloidal CdTe nanocrystals ». Dans NanoScience + Engineering, sous la direction de Elizabeth A. Dobisz et Louay A. Eldada. SPIE, 2008. http://dx.doi.org/10.1117/12.803826.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Greenberg, Melisa R., Gennady A. Smolyakov, Timothy J. Boyle et Marek Osinski. « Synthesis and Characterization of ZnO Colloidal Nanocrystals ». Dans CLEO '07. 2007 Conference on Lasers and Electro-Optics. IEEE, 2007. http://dx.doi.org/10.1109/cleo.2007.4452606.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Hill, Eric. « Synthesis of Semiconductors Confined in Nanoscopic Colloidal Templates toward Heterostructured Nanomaterials ». Dans Internet NanoGe Conference on Nanocrystals. València : Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.incnc.2021.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Nath, Peuli, et Aniruddha Ray. « Water-assisted facile synthesis of bright inorganic perovskite nanocrystals ». Dans Colloidal Nanoparticles for Biomedical Applications XVIII, sous la direction de Marek Osiński et Antonios G. Kanaras. SPIE, 2023. http://dx.doi.org/10.1117/12.2650534.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Gharde, Shruti I., Arjun Senthil, Mark V. Reymatias, Aadit Sharma, Ciara R. Murphy, Nathan J. Withers, Gennady A. Smolyakov et al. « Colloidal synthesis and characterization of ytterbium-doped YLF nanocrystals ». Dans Colloidal Nanoparticles for Biomedical Applications XVII, sous la direction de Marek Osiński et Antonios G. Kanaras. SPIE, 2022. http://dx.doi.org/10.1117/12.2615365.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Buonsanti, Raffaella. « Reaction Intermediates in the Synthesis of Colloidal Nanocrystals ». Dans MATSUS23 & Sustainable Technology Forum València (STECH23). València : FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.matsus.2023.063.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Huber, Dale L., Nathan J. Withers, Marek Osinski, Gavin Gonzales, Gema Alas, Alejandro Sandoval, Christina Minetos, Sergei A. Ivanov, Gennady A. Smolakov et Arjun Senthil. « Synthesis and characterization of colloidal ZnTe nanocrystals and ZnTe/ZnSe quantum dots ». Dans Colloidal Nanoparticles for Biomedical Applications XIII, sous la direction de Xing-Jie Liang, Wolfgang J. Parak et Marek Osiński. SPIE, 2018. http://dx.doi.org/10.1117/12.2299330.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Greenberg, Melisa R., Gennady A. Smolyakov, Jason C. Jones, Scott D. Bunge, Timothy J. Boyle et Marek Osinski. « Synthesis and characterization of InP and InN colloidal nanocrystals ». Dans 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference. IEEE, 2006. http://dx.doi.org/10.1109/cleo.2006.4628249.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Colloidal Synthesis - Nanocrystals"

1

Liu, Haitao. Chemistry of the Colloidal Group II-VI Nanocrystal Synthesis. Office of Scientific and Technical Information (OSTI), mai 2007. http://dx.doi.org/10.2172/918668.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie