Thèses sur le sujet « Colloidal synthesi »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleures thèses pour votre recherche sur le sujet « Colloidal synthesi ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
CAPITANI, CHIARA. « Synthesis of semiconductor colloidal nanocrystals with large Stokes-shift for luminescent solar concentrators ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/366195.
Texte intégralLuminescent solar concentrators (LSCs) are waveguides composed of a polymeric matrix doped or coated with fluorophores. The direct and/or diffuse sunlight that penetrates the matrix is absorbed by the fluorophores and then re-emitted by them with less energy. The light emitted, thanks to the total internal reflection, propagates until it reaches the edges of the wave guide where it is converted into electricity by photovoltaic cells placed on the perimeter of the matrix. The efficiency of the device is reduced by numerous loss processes, due to the reflection of the matrix and the escape cone, and/or due to the characteristics of the fluorophores, such as the absorption coefficient, the quantum yield (QY) of photoluminescence (PL) and the reabsorption. To minimize losses due to fluorophores, a good alternative are colloidal quantum dots (QDs) that usually have a high QY, a high absorption coefficient and a controllable emission wavelength by changing the size of the nanocrystals. Furthermore, by properly engineering the QDs, it is possible to realize particles with high Stokes-shift between the absorption and emission spectra, in order to reduce the reabsorption as much as possible. The project is focused on the development of the synthesis of QDs, in order to optimize the QY of photoluminescence, compatibility with the polymer matrix and photostability, while limiting the reabsorption. Besides. the synthesis procedure must be easily transferable on industrial volumes, to meet the production needs of high square meters of LSCs. During the three years of the doctoral project in High Apprenticeship I was able to develop a synthesis procedure consisting of four steps: • growth of CuInS2 core nanocrystals; • quaternary formation with zinc addition (ZnCuInS2); crucial step to increase the QY and control the emission wavelength; • growth of a zinc sulphide shell (ZnCuInS2/ZnS) to passivate the surface of nanocrystals, increase QY and photostability; • post-synthesis treatment of the partial exchange of ligands to improve solubility in the polymer matrix. The nanocrystals thus produced show 60% QY and excellent solubility in the polymer matrix. In fact, a large size LSC (30 cm x 30 cm x 0.7 cm) was produced, whose optical power efficiency, OPE = 6.8%. Initially, I developed the synthesis procedure in a 25 ml glass flask, producing 250 mg for batch. Thanks to the equipment provided by Glass to Power s.p.A I was able to study the increase in the scale of the synthesis. Firstly, in order to investigate some possible problems due to the increase in volumes, I have carried out preliminary studies on larger balloons, 500 mL and 2 L. After analysis of heating and quenching of synthesis, I have performed the synthesis in a preindustrial reactor producing 300 g of nanocrystals of ZnCuInS2/ZnS. In addition I also optimized the synthesis procedure. I tested several strategies to increase QY without damaging solubility in the polymer. Thanks to a variation of the reagent in the second step and an increase of the shell layers, I obtained nanocrystals with 80% of QY. The next step will be to scale up this new procedure and produce large LSCs. I collaborated with other PhD students, in particular, I synthesized with a heat-up method CdSe nanocrystals doped with Au7 clusters and decorated with conjugated dyes as efficient triplet sensitizers or up-conversion applications (gold doping improves up-conversion efficiency). The beneficial effects of the doping strategy result in a maximum UC efficiency of 12%, which is an unprecedented result for up-conversion based on decorated NCs as triplet sensitizers.
TRIPALDI, LAURA. « Self-Assembly of Nanoparticles in Rubber Nanocomposites ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/381184.
Texte intégralSiO2 nanoparticles (NPs) are known to improve the mechanical and functional properties of nanocomposite (NC) materials and are widely used as reinforcing fillers in tyres. The properties of NCs depend on the distribution of filler NPs, which in turn depends on the morphology and surface chemistry of filler NPs. The dispersion of hydrophilic SiO2 NPs in polymer matrices is typically achieved by functionalization with short-chain silanes. While anisotropic NPs are known to self-organize in ordered structures, producing improved mechanical properties in rubber NCs, evidence has shown that also spherical SiO2 NPs grafted with oligomer chains, i.e. SiO2 Hairy NPs (SiO2 HNPs), can improve filler/matrix compatibilization while self-organizing in anisotropic superstructures. However, the synthesis of SiO2 HNPs with rubbery shells is still largely unexplored, and the relationship between HNPs self-assembly and the mechanical properties of NCs is yet to be understood. In this context, the aim of this thesis was i) to develp an efficient synthesis of SiO2 HNPs with tunable size, controlled morphology and tailored surface chemistry; ii) to prepare rubber NCs based on SiO2 HNPs with improved reinforcement and reduced hysteresis; iii) to assess the self-assembly effects on the mechanical performance of the materials and iv) to study the interactions between SiO2 HNPs in order to determine which parameters control the self-assembly processes. During the first year of PhD activity the synthesis of polybutadiene (PB)-grafted SiO2 HNPs by a colloidal approach was optimized. The synthesis granted excellent control of HNPs morphology and surface chemistry. The bare and functionalized particles were fully characterized by a plethora of morphological and physico-chemical methods showing evidence of self-assembly. During the second year, SiO2 HNPs were used to prepare rubber NCs in an industrial formulation. The mechanical properties of the cured and uncured NCs were characterized by dynamic-mechanical analysis and tensile tests, showing that HNPs strongly improve reinforcement while reducing energy dissipation, highlighting improved filler/matrix interactions compared to both bare and silane-functionalized SiO2 NPs. Morphological characterization of the NCs confirmed the improvement of filler dispersion and distribution with increased PB functionalization and showed the self-organization of HNPs in anisotropic string-like superstructures. During the third year, the HNPs model was adapted to a scalable industrial rubber formulation using a PB macromolecular silane (MacroSil) and commercial precipitated silica. The mechanical properties of the rubber NCs were thoroughly characterized with dynamic mechanical analysis, tensile tests and Large Amplitude Oscillatory Shear (LAOS) analysis, showing that the addition of MacroSil significantly improves the mechanical performance of NCs compared to a short-chain silane. Finally, Small-Angle X-Ray Scattering of SiO2 HNPs dispersions in collaboration with Prof. Simone Mascotto at Hamburg University provided crucial structural parameters which were used to formulate a theoretical model of HNPs interactions, in collaboration with Prof. Arturo Moncho of the University of Granada and Prof. Gerardo Odriozola of UAM-Azcapotzalco. The theoretical model predicted the formation of the SiO2 HNPs anisotropic superstructures observed both in matrix free conditions and rubber NCs.
PIRAS, ROBERTO. « Synthesis and Characterization of Bi2S3 Colloidal Nanoparticles for Photovoltaic Applications ». Doctoral thesis, Università degli Studi di Cagliari, 2016. http://hdl.handle.net/11584/266676.
Texte intégralKhan, Saif A. « Microfluidic synthesis of colloidal nanomaterials ». Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/37223.
Texte intégralIncludes bibliographical references.
This thesis focuses on microfluidics based approaches for synthesis and surface-engineering of colloidal particles. Bottom-up assembly through colloidal nucleation and growth is a popular route to the controlled synthesis of nanomaterials. Standard bench-scale synthetic chemistry techniques often involve non-uniform spatial and temporal distributions of concentration and temperature, and are not readily scalable. Photolithography-based microfabrication enables the application of classical techniques of chemical reaction engineering to design chemical reactors that cannot be realized easily at the macroscale, and that closely approach theoretical 'idealized' reactor configurations. In addition, the microfluidic format allows precisely controlled reaction conditions such as rapid mixing, and concentration and temperature uniformity. The goal of this thesis was to design microfluidic reactors for synthesis of core-shell colloidal particles with tunable sizes. Microscale segmented gas-liquid flows overcome the large axial dispersion effects associated with single-phase laminar flows. Microchannel devices that yielded uniform, stable gas-liquid segmented flows over three orders of magnitude in flow velocity were first developed.
(cont.) Extensive experimental studies of the transport, dynamics and stability of such flows were then conducted with pulsed-laser fluorescent microscopy, optical stereomicroscopy and micro particle image velocimetry (-PIV). Flow segmentation not only reduces axial dispersion, but also allows rapid micromixing of miscible liquids through internal recirculations in the liquid phase. This added functionality is especially useful in syntheses involving colloidal particles that, due to inherently low diffusivity, cannot be rapidly mixed by laminar diffusive techniques. Continuous segmented flow reactors were then developed for the synthesis of colloidal silica and titania particles by sol-gel chemistry. Particle sizes could be tuned by varying the rates of flow of reactants, or by varying the chip temperature. Particle size distributions comparable to or narrower than the corresponding stirred-flask synthesis, with little agglomeration or shape distortion were obtained. Coating of colloidal particles with one or more layers of different materials is used to modify their optical, chemical or surface properties. Core-shell particles are often prepared by controlled precipitation of inorganic precursors onto core particles.
(cont.) Synthesis of such structures requires precise control over process parameters to prevent precipitation of secondary particles of shell material and agglomeration of primary particles. Particles coated with titania are exceptionally difficult to synthesize due to the high reactivity of the titania precursors, which makes controlled precipitation difficult. A novel continuous flow microfluidic reactor with sequential multi-point precursor addition was developed for colloidal overcoating processes. Silica particles were coated with uniform titania layers of tunable thickness by the controlled hydrolysis of titanium ethoxide, with no secondary particle formation or agglomeration. An integrated reactor for continuous silica synthesis and in-situ series overcoating with titania was then developed using a two-level stacked reactor fabrication process. Finally, multi-step nanomaterials synthesis and surface coating with incompatible chemistries requires the development of microfluidic 'unit operations' equivalent to particle filtration. In this context, rapid, continuous microfluidic particle separation was demonstrated using transverse free-flow electrophoresis.
by Saif A. Khan.
Ph.D.
Corradi, Roberto. « Conducting polymer-silica colloidal composites ». Thesis, University of Sussex, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263866.
Texte intégralNur, Hani. « Colloidal microgels : synthesis, characterisation and applications ». Thesis, University of Greenwich, 2009. http://gala.gre.ac.uk/8163/.
Texte intégralIMRAN, MUHAMMAD. « Synthesis and Post-synthesis Transformations of Colloidal Semiconductor Nanocrystals ». Doctoral thesis, Università degli studi di Genova, 2018. http://hdl.handle.net/11567/945513.
Texte intégralMany, Véronique. « Synthèse et design de nanorésonateurs optiques actifs dans le visible ». Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0325.
Texte intégralOver the last decade, the field of self-assembled metamaterials exhibiting unusual properties such as a magnetic response in the visible range represents a challenging and attracting area. Many simulations reported that a dense arrangement of specific plasmonic sub-units called “meta-atoms”, may lead to a material with a negative refractive index. It was reported by computational modelling that a dodecapod clusters made of a central dielectric core and surrounded by a controlled number of satellites (12 satellites, here) with a specific size can exhibited some interesting properties. Here, the purpose was to fabricate such clusters from colloidal particles, which are perfectly symmetrical, made of a silica core and 12 polystyrene nodules. Subsequently, those polystyrene nodules can be dissolved to get silica particles with a specific number of “patches” or “dimples”. Those objects were synthesized in a large quantity. We were able to make those dimples sticky to tiny gold seed of 2-3 nm size and to grow then for a specific size. Optical measurements reported the strong magnetic coupling in-between the plasmonic nanoparticles around the dielectric core. We also reported that growing silver on tiny gold seeds generates stronger magnetic responses than those observed from gold clusters
Briggs, Nigel P. « The synthesis and colloidal behaviour of copolymers ». Thesis, University of Manchester, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.328309.
Texte intégralYoung, Robert A. « Synthesis and application of novel colloidal material ». Thesis, University of Warwick, 2016. http://wrap.warwick.ac.uk/108359/.
Texte intégralДоброжан, Олександр Анатолійович, Александр Анатольевич Доброжан, Oleksandr Anatoliiovych Dobrozhan, Анатолій Сергійович Опанасюк, Анатолий Сергеевич Опанасюк, Anatolii Serhiiovych Opanasiuk, Світлана Іванівна Кшнякіна, Светлана Ивановна Кшнякина et Svitlana Ivanivna Kshniakina. « Synthesis of Cu2ZnSnSe4 nanoparticles by colloidal method ». Thesis, Видавництво Львівського національного університуту імені Івана Франка, 2014. http://essuir.sumdu.edu.ua/handle/123456789/38345.
Texte intégralPhan, The Anh. « Synthèse de polyaniline en systèmes micellaires : application à la protection des métaux ». Thesis, Toulon, 2014. http://www.theses.fr/2014TOUL0021/document.
Texte intégralIn this thesis, the polymerization of aniline in micellar solutions of decylphosphonic acid (DPA) as well as reversed micellar solutions of decylphosphonic acid / water / n-heptane : chroloform (2 : 1 vol/vol) was investigated. Unlike micellar solution, the polymerizations rate in the reversed micellar solution increases as the DPA concentration in the reaction medium decreases. This result was attributed to the packing density of DPA molecules in the surfactant shell of inverse micelles, which affects the diffusion of aniline into the inner of the water droplets in which the polymerization is preferred. The maximum electrical conductivity obtained is 3.6 S.cm-1. This value is four orders in magnitude greater than the value of DPA doped PANI prepared by postsynthesis treatment of the PANI-base with the solution of DPA (2.3 x 10-4 S.cm-1). The results of the X-ray diffraction analysis suggested the formation of layered structure of PANI backbone separated by long alkyl side chains of DPA. This organization reduces interchain interactions of the polyaniline and contributes to the increase in solubility of PANI in an organic solvent.The DPA doped PANI was incorporated as a pigment in the polymer binder polyvinyl butyral (PVB), and then applied to a steel material with a low content of carbon. In the case of the polyaniline prepared in the micellar solution of DPA, the dispersion of PANI was also applied to steel with thin layer after dialysis, and then coated with a top coat PVB. The PVB-PANI coatings applied on steel substrates are exposed in neutral saline corrosive media such as salt-spray or 3.5% NaCl solution. Based on the electrochemical impedance spectroscopy measurements, it is found that the corrosion protection efficiency of the DPA doped PANI increases with the amount of dopant of DPA. These results show an active role of DPA in the mechanism of protection. The active role of DPA was also confirmed by the analysis of the exposed metallic surface with the presence of insoluble phosphonate of iron. The corrosion protection provided by the DPA doped PANI appears better than the undoped polyaniline and the one doped with HCl
Meldrum, Fiona C. « Nanoscale synthesis in organised organic assemblies ». Thesis, University of Bath, 1992. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305061.
Texte intégralTorres, Mendieta Rafael Omar. « Synthesis of colloidal nanomaterials through femtosecond laser ablation ». Doctoral thesis, Universitat Jaume I, 2016. http://hdl.handle.net/10803/387325.
Texte intégralThe research conducted during this thesis work is focused on producing metal nanostructures inside organic oils and nano-essambles by Pulsed Laser Ablation in Liquids (PLAL) to solve the biggest issues on their production by conventional approaches: Poor stability, production of chemical waste and uncontrolled chemical reactions due to purity problems. In particular, the biggest contributions achieved on the present work, lies on the experimental demonstration of the synthesis of gold nanoparticles-based aqueous nanofluids that can be used as both volumetric light absorbers and heat exchangers. The fabrication of a nanofluid with a thermal conductivity enhancement of 4.06% over a commercial heat transfer fluid, an eutectic mixture of biphenyl and diphenyl oxide, and the best colloidal stability reported in the literature using these materials. And finally, demonstration of partial reduction of graphene-oxide sheets and its decoration with ligand-free gold nanoparticles, in a single reaction stage avoiding the production of chemical waste.
Khan-Lodi, A. N. « Microparticle synthesis and colloidal catalysis in microemulsion media ». Thesis, University of Kent, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234057.
Texte intégralClinton, Jamie C. « Colloidal Cerium Oxide Nanoparticle : Synthesis and Characterization Techniques ». Thesis, Virginia Tech, 2008. http://hdl.handle.net/10919/31065.
Texte intégralMaster of Science
Premathilaka, Shashini M. « Synthesis and Optical Properties of Colloidal PbS Nanosheets ». Bowling Green State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1561463157379607.
Texte intégralFielding, Lee A. « Synthesis, characterisation and applications of colloidal nanocomposite particles ». Thesis, University of Sheffield, 2012. http://etheses.whiterose.ac.uk/2859/.
Texte intégralLee, Hyeokjin. « Synthesis and characterization of colloidal II-VI semiconductor nanorods ». [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0012984.
Texte intégralSöderlind, Fredrik. « Colloidal synthesis of metal oxide nanocrystals and thin films ». Doctoral thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11831.
Texte intégralCoropceanu, Igor. « Colloidal CdSe/CdS nanostructures : synthesis, optical characterization and applications ». Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/107563.
Texte intégralCataloged from PDF version of thesis.
Includes bibliographical references.
The focus of this thesis is the study of CdSe/CdS nanostructures, from their fundamental properties to their integration in practical devices. This material system has proven to be remarkably robust both as a platform for studying physics in confined semiconductors, as well as for enabling various optical and optoelectronic applications. In this thesis, we will discuss our recent efforts to improve the synthesis of CdSe/CdS structures, to better understand their optical properties and to use them to create highly performing luminescent solar concentrators. In the first part of the thesis we will discuss our efforts to improve the synthesis of CdSe/CdS nanostructures of different dimensionalities. In particular, we discuss the synthesis of CdSe/CdS quantum dots and seeded CdSe/CdS nanorods that have a near unity photoluminescence quantum yield and complete energy transfer from the shell to the core. Next, we discuss the fabrication of luminescent solar concentrators using these materials and the optical characterization of these devices. Finally, in the last section, we use a combination of synthesis, spectroscopy, and modeling to gain better insight into the photoluminescence lineshape of CdSe/CdS quantum dots.
by Igor Coropceanu.
Ph. D. in Physical Chemistry
Zhang, Guangya. « Synthesis and characterization of metal substituted colloidal silicate-1 ». Licentiate thesis, Luleå tekniska universitet, 1996. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-25696.
Texte intégralBhandari, Ghadendra B. « Synthesis and AB-Initio Simulations of Colloidal PBS Nanosheets ». Bowling Green State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1403519605.
Texte intégralSayevich, Uladzimir. « Synthesis, Surface Design and Assembling of Colloidal Semiconductor Nanocrystals ». Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-209074.
Texte intégralHull, Peter J. « Synthesis and characterisation of quantum dots ». Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318760.
Texte intégralWard, Andrew David. « A study of the single-shot dispersion polymerisation of ethyl methacrylate in non-aqueous media ». Thesis, University of Bristol, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240730.
Texte intégralMcGrath, Jonathan G. « Synthesis and Characterization of Core/Shell Hydrogel Nanoparticles and Their Application to Colloidal Crystal Optical Materials ». Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/14537.
Texte intégralPedetti, Silvia. « Synthesis and optical properties of II-VI colloidal two-dimensional nanocrystals : homo- and hetero-structures ». Electronic Thesis or Diss., Paris 6, 2015. http://www.theses.fr/2015PA066755.
Texte intégralThis thesis project is based on the development of a novel class of colloidal two-dimensional nanocrystals, i.e. nanoplatelets (NPLs), composed of cadmium chalcogenides. These nanocrystals, in analogy to quantum wells, are characterized by an exciton confinement along one direction, i.e. the thickness, which can be controlled at atomic level. Nanoplatelets possess unique optical features as an excellent spectral resolution and good quantum yields. As consequence these nanocrystals are potential candidates for the fabrication of optoelectronic devices such as electroluminescent diodes or photo-detectors. However, for this aim it is necessary to enlarge the range of the absorption and emission wavelengths and to increase their quantum yield. For this reason, we investigated the colloidal synthesis of II-VI homo- and hetero-nanoplatelets which have been characterized by UV-Vis and photoluminescence spectroscopy, by X-ray diffraction and by electronic microscopy. First, we optimized the synthesis of CdTe NPLs using colloidal synthesis based on precursors injection at high temperatures. Then, we focused on more complexes hetero-structures. For example, through lateral extension reactions we obtained CdSe/CdTe core/crown NPLs which possess a type-II electronic structure. Successively, we studied the synthesis of core/shell NPLs by the growth of a second semiconductor layer along the thickness of NPLs cores. Depending on the core and shell chemical composition we could engineer the band gap of the nanoplatelets between type-I, quasi type-II and type-II electronic structures
GIUSTRA, MARCO DAVIDE. « Synthesis of multi-branched polymers for the stabilization of metallic nanoparticles ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/366171.
Texte intégralDesigning and monitoring all the preparation steps of a drug delivery system is essential to achieve a specific target. Each part of a nanocarrier affects the batch itself and the surrounding environment. In addition, to obtain monodispersed samples, the coating and any functionalization are crucial to determine the colloidal stability, to predict the behavior with a biological system, and the reaching of the target site. In particular, the achievement of intracellular sites by rationalizing the internalization mechanisms and quantifying the carriers in the target is still today a hot topic in the nanomedical field. Here, a class of multidentate polymers was presented: a simple way to synthesize them and show their broad applicability in combination with metal NPs. Multi-branched polymers were involved in three projects. The first project aimed to present a multidentate polymer as a general model to be applied in the coating of metal surfaces. To prove this, several tests were carried out by modulating the composition and size of the NPs. This easily synthesized polymer has been compared with two types of coatings common in literature. The obtained data show how the new surfactant provides high colloidal stable nanoparticles. Secondly, this leads to improvements from the point of view of toxicity and bio-functionalization. In the second project, the ligands polymer chain was modified to increase the range of application. Moreover, the choice of the ligand was based on the affinity for certain metal surfaces. In this case, the molecule is 4-aminotiophenol which is often used for SERS applications. Initially, the versatility of the polymer was investigated by coating different types of metallic NPs (gold and silver) and then SERS analyses were performed. Size and shape played a key role, especially with cubic concave nanoparticles that are promising for diagnostics application. In the second part of the project, cubic silver nanoparticles were used as a model for the evaluation of cell trafficking and endosomal maturation. Preliminary tests of NPs have been carried out at different pH (to emulate the pH variations in the endosomal evolution stages) and in vitro studies to check the nanoparticles uptake in HeLa cells were performed. The third project aimed to use the designed polymer as precursor in the synthesis of anisotropic nanoparticles. The shape obtained is a petal form. Subsequently, with the increase of the temperature, the petals assembled to nanoflowers above 100 nm. The presence of the active SERS polymer makes these nanoparticles, excellent candidates for this application.
Pan, Guiquan. « Colloidal gallium nitride quantum dots (GaN QDs) : synthesis and characterization / ». View abstract, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3248456.
Texte intégralKhlebtsov, B. N., et E. V. Panfilova. « Synthesis and Study of PNIPAM Nanogels Incorporated with Colloidal Silver ». Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35090.
Texte intégralWeeraddana, Tharaka Missaka De Silva. « Synthesis, Characterization, and Exciton Physics of Colloidal Lead Sulfide Nanosheets ». Bowling Green State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1591381301083136.
Texte intégralKong, Eunsoo [Verfasser]. « Controlling Hypersonic Particle Resonances through Tailored Colloidal Synthesis / Eunsoo Kong ». Mainz : Universitätsbibliothek Mainz, 2020. http://d-nb.info/1211964981/34.
Texte intégralOdziomek, Mateusz Janusz. « Colloidal Synthesis and Controlled 2D/3D Assemblies of Oxide Nanoparticles ». Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEN092/document.
Texte intégralNanotechnology has become a key domain of technology in XXI century. The great development of the synthetic approaches toward nanoparticles (NPs) with desired composition, size and shape expose the potential of their use as building blocks for larger scale structures. It allows fabrication of functional materials and devices directly from colloids by bottom-up approach, thus involving possibility of material design over several length scales. The process is referred to NPs assembly or self-assembly and leads to materials with varying architectures as for instance 1D (rods), 2D (films) or 3D (superlattices or gels). However most of 3D assemblies are limited to the micrometric scale and are difficult to control. Practically the only route allowing preparation of macroscopic 3D structures from NPs is their gelation and preparation of aerogels. As an alternative, NPs can be embedded in some matrix creating bulk composite material, with homogenously distributed non-aggregated NPs.Therefore, this work is devoted to development of materials with different dimensionalities for various applications from metal oxides NPs (mainly Y3Al5O12:Ce and Li4Ti5O12). The first part describes the syntheses of YAG:Ce and LTO NPs by glycothermal approach. In the case of YAG:Ce, the reactions conditions were appropriately adjusted in order to obtain non-aggregated nanocrystals (NCs) of few nanometers. The colloidal solution containing such NCs with different concentration was used for fabrication of thin films with controllable thickness by spin-coating method. Contrary, the synthesis of LTO led to aggregated NPs with hierarchical structuration which was highly beneficial for Li-ion batteries. The large surface area and porosity ensured efficient exchange of Li ions between electrolyte and anode material. Furthermore, the YAG:Ce NCs were used for preparation of macroscopic monoliths with high porosity and transparency. For that reason, colloidal solution of NCs was gelled by the abrupt change of solvent dielectric constant. The gels were further supercritically dried yielding YAG:Ce NPs-based aerogels with high porosity and transparency. The same approach turned o be appropriate for other systems like GdF3 or hybrid aerogels of YAG:Ce and GdF3.Alternatively, YAG:Ce NPs were incorporated into silica aerogels forming robust macroscopic and highly transparent aerogels exhibiting properties of incorporated NPs. They served for novel type of sensors for low-energy ionizing radiation in liquids and gases. Their high porosity assured well-developed contact between radioactive emitter and the scintillator ensuring good harvesting of radioactive energy
SHAMSI, JAVAD. « Colloidal Synthesis of Lead Halide Perovskite Nanocrystals for Optoelectronic Application ». Doctoral thesis, Università degli studi di Genova, 2018. http://hdl.handle.net/11567/929994.
Texte intégralJustynska, Justyna. « Towards a library of functional block copolymers synthesis and colloidal properties / ». Phd thesis, [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=977274519.
Texte intégralArnal, Pablo Maximiliano. « The synthesis of monodisperse colloidal core @shell spheres and hollow particles ». [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=981080596.
Texte intégralHunt, Zachary. « Surface functionalized colloidal particles and polymer synthesis for LED based applications ». Connect to this title online, 2008. http://etd.lib.clemson.edu/documents/1211389059/.
Texte intégralPanthani, Matthew George. « Colloidal Nanocrystals with Near-infrared Optical Properties| Synthesis, Characterization, and Applications ». Thesis, The University of Texas at Austin, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3572875.
Texte intégralColloidal nanocrystals with optical properties in the near-infrared (NIR) are of interest for many applications such as photovoltaic (PV) energy conversion, bioimaging, and therapeutics. For PVs and other electronic devices, challenges in using colloidal nanomaterials often deal with the surfaces. Because of the high surface-to-volume ratio of small nanocrystals, surfaces and interfaces play an enhanced role in the properties of nanocrystal films and devices.
Organic ligand-capped CuInSe2 (CIS) and Cu(InXGa 1-X)Se2 (CIGS) nanocrystals were synthesized and used as the absorber layer in prototype solar cells. By fabricating devices from spray-coated CuInSe nanocrystals under ambient conditions, solar-to-electric power conversion efficiencies as high as 3.1% were achieved. Many treatments of the nanocrystal films were explored. Although some treatments increased the conductivity of the nanocrystal films, the best devices were from untreated CIS films. By modifying the reaction chemistry, quantum-confined CuInSe XS2-X (CISS) nanocrystals were produced. The potential of the CISS nanocrystals for targeted bioimaging was demonstrated via oral delivery to mice and imaging of nanocrystal fluorescence.
The size-dependent photoluminescence of Si nanocrystals was measured. Si nanocrystals supported on graphene were characterized by conventional transmission electron microscopy and spherical aberration (Cs)-corrected scanning transmission electron microscopy (STEM). Enhanced imaging contrast and resolution was achieved by using Cs-corrected STEM with a graphene support. In addition, clear imaging of defects and the organic-inorganic interface was enabled by utilizing this technique.
Fisher, Aidan Antony Edward. « Colloidal synthesis, structural characterisation and single molecule spectroscopy of semiconducting nanocrystals ». Thesis, University of Sussex, 2018. http://sro.sussex.ac.uk/id/eprint/73443/.
Texte intégralMohsen, Momee Reham M. « Synthesis, physico-chemical properties and potential applications of colloidal gel particles ». Thesis, University of Greenwich, 2015. http://gala.gre.ac.uk/18140/.
Texte intégralGhifari, Najla. « Microfluidic-based colloidal ZnO microcapsules : synthesis, structure,organization and first applications ». Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPAST066.
Texte intégralThis work focuses on the development of an original droplet-based microfluidics approach to generate highly monodisperse micrometer-sized ZnO spheres with well-controlled size and morphology. This approach is straightforward, and promising not only for the fabrication of uniform-sized ZnO microcapsules, with adjustable size and precise control at the microscale, but also for gaining new insights into the understanding of colloidal growth processes and self-organization of ZnO nanoparticles by the microfluidic route. In addition, such microparticles may find interesting applications in many areas such as photonics, photovoltaics, or biomedecine. This work deals with the effect of handling parameters on droplet formation, size, and stability of the resulting microspheres, as well as the study of their optical and electrical properties coupling experimental and theoretical works. We have shown the synthesis, in a micrometric range from 10 mm to 30 mm, of mesoporous ZnO microcapsules with a thin and flexible shell. We investigate the polar feature of ZnO nanoparticles and their interfacial self-organization. Besides, we reveal that the electric charges carried by ZnO primary units play a crucial role in the stability of the droplets in the presence and in the absence of charged molecules. It also plays a key role throughout the assembly process from the creation of the colloidal ZnO nanoparticles to the microdroplets, and finally the microspheres. We report, for the first time, the selforganization of doped-ZnO liquid microdroplets in square arrays. We demonstrate that such a result discloses the polar aspect of ZnO microdroplets and corroborate a shift in the balance between the driving forces controlling the ZnO nanoparticles organization at the nanoscale. We have developed different models, in very good agreement with the dipole-field and interfacial forces mechanisms, to support the experimental results put forward, and to explain the ZnO/RhB nanoparticles interfacial organization based on ZnO droplets organization properties. Based on our findings, and on the stated dependence of the microcapsules size, shell thickness, and nanoparticles surface density versus the droplets size, we provide an original model for the contribution of the involved factors in the shell formation mechanism
Li, Wenhui. « Connecting Thermodynamics and Kinetics of Ligand Controlled Colloidal Pd Nanoparticle Synthesis ». Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/100595.
Texte intégralDoctor of Philosophy
Ho, Minh Q. « Colloidal Synthesis and Optical Characterizations of Semiconductor Nanocrystals from Nontoxic Elements ». VCU Scholars Compass, 2015. http://scholarscompass.vcu.edu/etd/3915.
Texte intégralKeng, Pei Yuin. « Synthesis, Assembly and Colloidal Polymerization of Polymer-Coated Ferromagnetic Cobalt Nanoparticles ». Diss., The University of Arizona, 2010. http://hdl.handle.net/10150/193639.
Texte intégralPang, Yingping. « 2D Colloidal Atomic-Thick Metal Chalcogenides : Synthesis, Growth Mechanisms and Applications ». Thesis, Curtin University, 2019. http://hdl.handle.net/20.500.11937/80107.
Texte intégralGONCALVES, GUILHERME. « Colloidal synthesis and characterization of two- and three-dimensional semiconductor nanocrystals ». Doctoral thesis, Università degli studi di Genova, 2018. http://hdl.handle.net/11567/930563.
Texte intégralHuba, Zachary. « Synthesis and characterization of cobalt carbide based nanomaterials ». VCU Scholars Compass, 2014. http://scholarscompass.vcu.edu/etd/3320.
Texte intégralBerestok, Taisiia. « Assembly of colloidal nanocrystals into porous nanomaterials ». Doctoral thesis, Universitat de Barcelona, 2018. http://hdl.handle.net/10803/663275.
Texte intégralEsta tesis se centra en la síntesis coloidal de nanocristales (NCs), en la exploración de su química de superficie y en su ensabanado en nanomateriales porosos funcionales. Para demostrar la versatilidad de aplicación de dichas estructuras, en este estudio se han considerado NCs de distintos tipos de materiales: metales (Au), óxidos metálicos (CeO2, TiO2, Fe2O3), calcogenuros metálicos (In2S3, ZnS, PbS, CuGaS2,Cu2ZnSnSe4) y sus materiales compuestos. El trabajo se dividió en dos bloques. En el primero se desarrolló y optimizó la síntesis de NCs de óxidos y calcogenuros metálicos y se evaluó su potencial para aplicaciones de catálisis y fotocatálisis. Se investigó en profundidad la síntesis de NCs de CeO2, poniendo énfasis en controlar su morfología. Se consiguió producir NCs de CeO2 de forma controlada (esférica, octapodo ramificado, cúbico ramificado y romboidal) y con tamaño controlado (7-45 nm). Asimismo, se obtuvieron NCs de Cu2ZnSnSe4 con una fina distribución de tamaños y composición controlada. En el segundo bloque se establecieron y estudiaron procedimientos para fabricar nanomateriales porosos mono- o multicomponentes a partir del ensamblado de NCs. Se desarrolló una estrategia basada en el ajuste de la química de superficie de NCs de óxidos metálicos (CeO2, Fe2O3,TiO2) y de calcogenuros metálicos (In2S3, CuGaS2-ZnS) que permitió su ensamblaje controlado en estructuras porosas de tipo gel y aerogel. En el caso de los óxidos metálicos, se determinó que el ensamblado se inicia con la adición de un epóxido a NCs funcionalizados con glutamina, causando la gelación. La desorción oxidativa de ligandos basada en la formación de enlaces calcogenuro-calcogenuro se propuso como mecanismo de gelación en calcogenuros mono- (In2S3) y multicomponente (CuGaS2-ZnS). Se investigó el impacto del empleo de distintos ligandos en la eficiencia foto-electrocatalítica de NCs en forma coloidal, ensamblados en geles y soportados en sustratos. Se desarrolló y estudió el ajuste de la química de superficie de NCs para la obtención de ensamblajes multicomponente mediante interacción electrostática de coloides en suspensión. El mecanismo de gelación fue investigado al detalle para materiales compuestos de NCs de oxido metálico (CeO2) con NCs de óxido de calcogenuro (PbS-CeO2) y metálicos (Au-CeO2). Los aerogeles de Au-CeO2 demostraron potencial para la oxidación de CO.
Xu, Lianbin. « Fabrication of Three-Dimensionally Ordered Nanostructured Materials Through Colloidal Crystal Templating ». ScholarWorks@UNO, 2005. http://scholarworks.uno.edu/td/156.
Texte intégral