Littérature scientifique sur le sujet « Cold-active enzyme »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Cold-active enzyme ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Cold-active enzyme"
Iyo, Abiye H., et Cecil W. Forsberg. « A Cold-Active Glucanase from the Ruminal BacteriumFibrobacter succinogenes S85 ». Applied and Environmental Microbiology 65, no 3 (1 mars 1999) : 995–98. http://dx.doi.org/10.1128/aem.65.3.995-998.1999.
Texte intégralGatti-Lafranconi, Pietro, Serena Caldarazzo, Lilia Alberghina et Marina Lotti. « Directed evolution of a cold-active lipolytic enzyme ». Journal of Biotechnology 131, no 2 (septembre 2007) : S117. http://dx.doi.org/10.1016/j.jbiotec.2007.07.204.
Texte intégralČanak, Iva, Adrienn Berkics, Nikolett Bajcsi, Monika Kovacs, Agnes Belak, Renata Teparić, Anna Maraz et Vladimir Mrša. « Purification and Characterization of a Novel Cold-Active Lipase from the Yeast Candida zeylanoides ». Journal of Molecular Microbiology and Biotechnology 25, no 6 (2015) : 403–11. http://dx.doi.org/10.1159/000442818.
Texte intégralIsaksen, Geir Villy, Johan Åqvist et Bjørn Olav Brandsdal. « Enzyme surface rigidity tunes the temperature dependence of catalytic rates ». Proceedings of the National Academy of Sciences 113, no 28 (27 juin 2016) : 7822–27. http://dx.doi.org/10.1073/pnas.1605237113.
Texte intégralLiu, W. Y., Y. W. Shi, X. Q. Wang et K. Lou. « Isolation and identification of a strain producing cold-adapted &beta ; galactosidase, and purification and characterisation of the enzyme ». Czech Journal of Food Sciences 26, No. 4 (22 août 2008) : 284–90. http://dx.doi.org/10.17221/31/2008-cjfs.
Texte intégralSiddiqui, Khawar S., Georges Feller, Salvino D'Amico, Charles Gerday, Laura Giaquinto et Ricardo Cavicchioli. « The Active Site Is the Least Stable Structure in the Unfolding Pathway of a Multidomain Cold-Adapted α-Amylase ». Journal of Bacteriology 187, no 17 (1 septembre 2005) : 6197–205. http://dx.doi.org/10.1128/jb.187.17.6197-6205.2005.
Texte intégralCoombs, Jonna M., et Jean E. Brenchley. « Biochemical and Phylogenetic Analyses of a Cold-Active β-Galactosidase from the Lactic Acid Bacterium Carnobacterium piscicola BA ». Applied and Environmental Microbiology 65, no 12 (1 décembre 1999) : 5443–50. http://dx.doi.org/10.1128/aem.65.12.5443-5450.1999.
Texte intégralMaharana, Abhas Kumar. « EXTRACELLULAR COLD ACTIVE ENDOGLUCANASE AND PIGMENT PRODUCING PSYCHROTOLERANT PENICILLIUM PINOPHILUM ». International Journal of Pharmacy and Pharmaceutical Sciences 8, no 10 (12 août 2016) : 164. http://dx.doi.org/10.22159/ijpps.2016v8i10.13441.
Texte intégralMohamad Ali, Mohd Shukuri, Siti Farhanie Mohd Fuzi, Menega Ganasen, Raja Noor Zaliha Raja Abdul Rahman, Mahiran Basri et Abu Bakar Salleh. « Structural Adaptation of Cold-Active RTX Lipase fromPseudomonassp. Strain AMS8 Revealed via Homology and Molecular Dynamics Simulation Approaches ». BioMed Research International 2013 (2013) : 1–9. http://dx.doi.org/10.1155/2013/925373.
Texte intégralNecula-Petrareanu, Georgiana, Paris Lavin, Victoria Ioana Paun, Giulia Roxana Gheorghita, Alina Vasilescu et Cristina Purcarea. « Highly Stable, Cold-Active Aldehyde Dehydrogenase from the Marine Antarctic Flavobacterium sp. PL002 ». Fermentation 8, no 1 (27 décembre 2021) : 7. http://dx.doi.org/10.3390/fermentation8010007.
Texte intégralThèses sur le sujet "Cold-active enzyme"
ORLANDO, MARCO. « Biochemical and biophysical analysis of two Antarctic lysozyme endolysins and in silico exploration of glycoside hydrolase 19 sequence space ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2020. http://hdl.handle.net/10281/261919.
Texte intégralBiodiversity of organisms and their genomic content is a valuable source of enzymes, some of which can be isolated and turned into biocatalysts, useful for more sustainable and efficient industrial processes. Organisms thriving in constantly cold environments produce enzymes that may be more efficient in the cold and more thermolabile than enzymes from other organisms, and that display interesting features for the catalysis of several processes that require or are better at low temperature. In the first part of this thesis, two glycoside hydrolases of family 19 (GH19), named LYS177 and LYS188, were identified in the genome of an Antarctic Pseudomonas strain and characterized. Even though most of the characterized GH19 are chitinases, LYS177 and LYS188 showed no chitinolytic activity, but were active as lysozymes with an optimum temperature of 25-35°C, and retained 40% of their highest activity at 5°C. The temperatures of midpoint unfolding transition were estimated to be 20°C higher than their optimum of activity. Based on these features and sequence analysis, LYS177 and LYS188 can be considered cold-active phage endolysins integrated in prophagic regions of the bacterial host. Moreover, the best performing of the two, LYS177, was active and structurally stable over several days only at 4°C, indicating it as a candidate for potential application on the preservation of food and beverages during cold storage. In protein families, enzymes can rapidly acquire new specializations. Therefore, best practices should be implemented to select optimal candidates with the activity of interest and new, potentially promising, features. Characterized GH19 enzymes showed an enhanced in vivo crop defence against chitin containing pathogens and antimicrobial potentialities. In the second part of this thesis, the sequence space of the GH19 family was explored and a database was created to highlight non-described sequences potentially endowed with interesting variants. Based on global pairwise sequence identity of all proteins available in public databases, GH19s were assigned to two subfamilies, the chitinases and the endolysins. Subfamilies were further split into homologous families, which differ in the n° of characterized enzymes they harbour, in the taxonomical distribution, in the presence of accessory domains and loop insertions. Despite this heterogeneity, a core consisting of 27 amino acids around the active site, including important substrate binding residues, was inferred to be conserved between GH19 subfamilies. Thus, this shared core is suggested to be associated to the GH19 capacity to bind sugars containing N-acetyl-glucosamine. Moreover, specifically conserved positions in each subfamily alignment were identified to be a “signature” useful for predicting the substrate specialization of chitinases and endolysins, and to indicate possible outliers with different features. The GH19 evolution was also investigated through molecular phylogeny to explain the observed sequence and structural plasticity: despite endolysins were divided in an higher number of homologous families, they remained in phages and their bacterial hosts, contrary to chitinases, which spread to both prokaryotic and eukaryotic taxa, and acquired at least four loop insertions; moreover, the GH19 chitinase catalytic domain passed from plants to bacteria by horizontal gene transfer in at least two cases. In conclusion, the second part of this thesis shows how bioinformatic tools can be used to analyse the sequence space of a glycoside hydrolase family and extract information to help both experts and non-experts to optimize the discovery of new biocatalysts potentially applied in the field of human health and nutrition.
Kulakova, Ljudmila Borisovna. « Studies of Cold-active Enzymes from Cold-adapted Microorganisms ». Kyoto University, 2000. http://hdl.handle.net/2433/181053.
Texte intégral0048
新制・課程博士
博士(農学)
甲第8424号
農博第1108号
新制||農||799(附属図書館)
学位論文||H12||N3381(農学部図書室)
UT51-2000-F328
京都大学大学院農学研究科応用生命科学専攻
(主査)教授 江﨑 信芳, 教授 清水 昌, 教授 加藤 暢夫
学位規則第4条第1項該当
Diez-Aguirre, Jesus Javier. « A cold-active lactate dehydrogenase from an Antarctic bacterium ». Thesis, Imperial College London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312140.
Texte intégralHuston, Adrienne Louisa. « Bacterial adaptation to the cold : in situ activities of extracellular enzymes in the North Water polynya and characterization of a cold-active aminopeptidase from Colwellia psychrerythraea strain 34H / ». Thesis, Connect to this title online ; UW restricted, 2003. http://hdl.handle.net/1773/11062.
Texte intégralElend, Christian. « Metagenombasierte Isolierung und biochemische Charakterisierung neuartiger stereospezifischer Lipasen für biokatalytische Anwendungen ». Doctoral thesis, 2006. http://hdl.handle.net/11858/00-1735-0000-0006-ACD4-7.
Texte intégralLivres sur le sujet "Cold-active enzyme"
Ferguson, Colin. Pathophysiology and management of hypothermia. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0354.
Texte intégralChapitres de livres sur le sujet "Cold-active enzyme"
Gerday, Charles. « Fundamentals of Cold-Active Enzymes ». Dans Cold-adapted Yeasts, 325–50. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-662-45759-7_15.
Texte intégralBaeza, Marcelo, Jennifer Alcaíno, Víctor Cifuentes, Benedetta Turchetti et Pietro Buzzini. « Cold-Active Enzymes from Cold-Adapted Yeasts ». Dans Biotechnology of Yeasts and Filamentous Fungi, 297–324. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58829-2_10.
Texte intégralHamid, Burhan, et Fayaz A. Mohiddin. « Cold-Active Enzymes in Food Processing ». Dans Enzymes in Food Technology, 383–400. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1933-4_19.
Texte intégralBarroca, Mário, Gustavo Santos, Charles Gerday et Tony Collins. « Biotechnological Aspects of Cold-Active Enzymes ». Dans Psychrophiles : From Biodiversity to Biotechnology, 461–75. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57057-0_19.
Texte intégralBiałkowska, Aneta, et Marianna Turkiewicz. « Miscellaneous Cold-Active Yeast Enzymes of Industrial Importance ». Dans Cold-adapted Yeasts, 377–95. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-662-45759-7_17.
Texte intégralMarudhadurai, Thenmozhi, et Navabshan Irfan. « Computational Investigation of Versatile Activity of Piperine ». Dans Advances in Medical Technologies and Clinical Practice, 127–39. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7326-5.ch006.
Texte intégralMattiasson, Bo, H√°kon √ñrn Birgisson et Rajni Hatti-Kaul. « Cold Active Enzymes in Food Processing ». Dans Food Biotechnology, Second Edition. CRC Press, 2005. http://dx.doi.org/10.1201/9781420027976.ch3.13.
Texte intégral« Cold-adapted Microorganisms as Sources of Cold-active Enzymes ». Dans Recent Advances in Marine Biotechnology, Vol. 8, 16–77. CRC Press, 2003. http://dx.doi.org/10.1201/9781482279986-5.
Texte intégralBauvois, Cédric, Adrienne L. Huston et Georges Feller. « The Cold-Active M1 Aminopeptidase from the Arctic Bacterium Colwellia psychrerythraea ». Dans Handbook of Proteolytic Enzymes, 463–67. Elsevier, 2013. http://dx.doi.org/10.1016/b978-0-12-382219-2.00095-8.
Texte intégralAdapa, Vijayanand, L. N. Ramya et K. K. Pulicherla. « Cold-active enzymes : Enabling nonthermal processing in food industry ». Dans Microbial Extremozymes, 39–53. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-822945-3.00002-6.
Texte intégralActes de conférences sur le sujet "Cold-active enzyme"
Rubiano-Labrador, Carolina, Rosa Acevedo-Barrios, Alba García Lazaro, Lilia Ward Bowie, Ana Karina Támara Acosta et Blanca Mercado Molina. « Pseudomonas strains from the Livingston Island, Antarctica : a source of cold-active hydrolytic enzymes ». Dans 20th LACCEI International Multi-Conference for Engineering, Education and Technology : “Education, Research and Leadership in Post-pandemic Engineering : Resilient, Inclusive and Sustainable Actions”. Latin American and Caribbean Consortium of Engineering Institutions, 2022. http://dx.doi.org/10.18687/laccei2022.1.1.713.
Texte intégral